Wigner Distribution Functions and the Representation of Canonical Transformations in Time-Dependent Quantum Mechanics

For classical canonical transformations, one can, using the Wigner transformation, pass from their representation in Hilbert space to a kernel in phase space. In this paper it will be discussed how the time-dependence of the uncertainties of the corresponding time-dependent quantum problems can be i...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2008
Автори: Schuch, D., Moshinsky, M.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2008
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/149027
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Wigner Distribution Functions and the Representation of Canonical Transformations in Time-Dependent Quantum Mechanics / D. Schuch, M. Moshinsky // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 25 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-149027
record_format dspace
spelling irk-123456789-1490272019-02-20T01:28:47Z Wigner Distribution Functions and the Representation of Canonical Transformations in Time-Dependent Quantum Mechanics Schuch, D. Moshinsky, M. For classical canonical transformations, one can, using the Wigner transformation, pass from their representation in Hilbert space to a kernel in phase space. In this paper it will be discussed how the time-dependence of the uncertainties of the corresponding time-dependent quantum problems can be incorporated into this formalism. 2008 Article Wigner Distribution Functions and the Representation of Canonical Transformations in Time-Dependent Quantum Mechanics / D. Schuch, M. Moshinsky // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 25 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 37J15; 81Q05; 81R05; 81S30 http://dspace.nbuv.gov.ua/handle/123456789/149027 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description For classical canonical transformations, one can, using the Wigner transformation, pass from their representation in Hilbert space to a kernel in phase space. In this paper it will be discussed how the time-dependence of the uncertainties of the corresponding time-dependent quantum problems can be incorporated into this formalism.
format Article
author Schuch, D.
Moshinsky, M.
spellingShingle Schuch, D.
Moshinsky, M.
Wigner Distribution Functions and the Representation of Canonical Transformations in Time-Dependent Quantum Mechanics
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Schuch, D.
Moshinsky, M.
author_sort Schuch, D.
title Wigner Distribution Functions and the Representation of Canonical Transformations in Time-Dependent Quantum Mechanics
title_short Wigner Distribution Functions and the Representation of Canonical Transformations in Time-Dependent Quantum Mechanics
title_full Wigner Distribution Functions and the Representation of Canonical Transformations in Time-Dependent Quantum Mechanics
title_fullStr Wigner Distribution Functions and the Representation of Canonical Transformations in Time-Dependent Quantum Mechanics
title_full_unstemmed Wigner Distribution Functions and the Representation of Canonical Transformations in Time-Dependent Quantum Mechanics
title_sort wigner distribution functions and the representation of canonical transformations in time-dependent quantum mechanics
publisher Інститут математики НАН України
publishDate 2008
url http://dspace.nbuv.gov.ua/handle/123456789/149027
citation_txt Wigner Distribution Functions and the Representation of Canonical Transformations in Time-Dependent Quantum Mechanics / D. Schuch, M. Moshinsky // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 25 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT schuchd wignerdistributionfunctionsandtherepresentationofcanonicaltransformationsintimedependentquantummechanics
AT moshinskym wignerdistributionfunctionsandtherepresentationofcanonicaltransformationsintimedependentquantummechanics
first_indexed 2023-05-20T17:32:01Z
last_indexed 2023-05-20T17:32:01Z
_version_ 1796153501025304576