2025-02-23T08:43:20-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-149028%22&qt=morelikethis&rows=5
2025-02-23T08:43:20-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-149028%22&qt=morelikethis&rows=5
2025-02-23T08:43:20-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T08:43:20-05:00 DEBUG: Deserialized SOLR response

Periodic and Solitary Travelling-Wave Solutions of an Extended Reduced Ostrovsky Equation

Periodic and solitary travelling-wave solutions of an extended reduced Ostrovsky equation are investigated. Attention is restricted to solutions that, for the appropriate choice of certain constant parameters, reduce to solutions of the reduced Ostrovsky equation. It is shown how the nature of the w...

Full description

Saved in:
Bibliographic Details
Main Author: Parkes, E.J.
Format: Article
Language:English
Published: Інститут математики НАН України 2008
Series:Symmetry, Integrability and Geometry: Methods and Applications
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/149028
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Periodic and solitary travelling-wave solutions of an extended reduced Ostrovsky equation are investigated. Attention is restricted to solutions that, for the appropriate choice of certain constant parameters, reduce to solutions of the reduced Ostrovsky equation. It is shown how the nature of the waves may be categorized in a simple way by considering the value of a certain single combination of constant parameters. The periodic waves may be smooth humps, cuspons, loops or parabolic corner waves. The latter are shown to be the maximum-amplitude limit of a one-parameter family of periodic smooth-hump waves. The solitary waves may be a smooth hump, a cuspon, a loop or a parabolic wave with compact support. All the solutions are expressed in parametric form. Only in one circumstance can the variable parameter be eliminated to give a solution in explicit form. In this case the resulting waves are either a solitary parabolic wave with compact support or the corresponding periodic corner waves.