Zhedanov's Algebra AW(3) and the Double Affine Hecke Algebra in the Rank One Case. II. The Spherical Subalgebra

This paper builds on the previous paper by the author, where a relationship between Zhedanov's algebra AW(3) and the double affine Hecke algebra (DAHA) corresponding to the Askey-Wilson polynomials was established. It is shown here that the spherical subalgebra of this DAHA is isomorphic to AW(...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2008
Автор: Koornwinder, T.H.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2008
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/149029
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Zhedanov's Algebra AW(3) and the Double Affine Hecke Algebra in the Rank One Case. II. The Spherical Subalgebra / T.H. Koornwinder // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 15 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:This paper builds on the previous paper by the author, where a relationship between Zhedanov's algebra AW(3) and the double affine Hecke algebra (DAHA) corresponding to the Askey-Wilson polynomials was established. It is shown here that the spherical subalgebra of this DAHA is isomorphic to AW(3) with an additional relation that the Casimir operator equals an explicit constant. A similar result with q-shifted parameters holds for the antispherical subalgebra. Some theorems on centralizers and centers for the algebras under consideration will finally be proved as corollaries of the characterization of the spherical and antispherical subalgebra.