Quantum Painlevé Equations: from Continuous to Discrete

We examine quantum extensions of the continuous Painlevé equations, expressed as systems of first-order differential equations for non-commuting objects. We focus on the Painlevé equations II, IV and V. From their auto-Bäcklund transformations we derive the contiguity relations which we interpret as...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2008
Автори: Nagoya, H., Grammaticos, B., Ramani, A.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2008
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/149030
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Quantum Painlevé Equations: from Continuous to Discrete / H. Nagoya, B. Grammaticos, A. Ramani // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 16 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-149030
record_format dspace
spelling irk-123456789-1490302019-02-20T01:28:36Z Quantum Painlevé Equations: from Continuous to Discrete Nagoya, H. Grammaticos, B. Ramani, A. We examine quantum extensions of the continuous Painlevé equations, expressed as systems of first-order differential equations for non-commuting objects. We focus on the Painlevé equations II, IV and V. From their auto-Bäcklund transformations we derive the contiguity relations which we interpret as the quantum analogues of the discrete Painlevé equations. 2008 Article Quantum Painlevé Equations: from Continuous to Discrete / H. Nagoya, B. Grammaticos, A. Ramani // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 16 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 34M55; 37K55; 81S99 http://dspace.nbuv.gov.ua/handle/123456789/149030 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We examine quantum extensions of the continuous Painlevé equations, expressed as systems of first-order differential equations for non-commuting objects. We focus on the Painlevé equations II, IV and V. From their auto-Bäcklund transformations we derive the contiguity relations which we interpret as the quantum analogues of the discrete Painlevé equations.
format Article
author Nagoya, H.
Grammaticos, B.
Ramani, A.
spellingShingle Nagoya, H.
Grammaticos, B.
Ramani, A.
Quantum Painlevé Equations: from Continuous to Discrete
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Nagoya, H.
Grammaticos, B.
Ramani, A.
author_sort Nagoya, H.
title Quantum Painlevé Equations: from Continuous to Discrete
title_short Quantum Painlevé Equations: from Continuous to Discrete
title_full Quantum Painlevé Equations: from Continuous to Discrete
title_fullStr Quantum Painlevé Equations: from Continuous to Discrete
title_full_unstemmed Quantum Painlevé Equations: from Continuous to Discrete
title_sort quantum painlevé equations: from continuous to discrete
publisher Інститут математики НАН України
publishDate 2008
url http://dspace.nbuv.gov.ua/handle/123456789/149030
citation_txt Quantum Painlevé Equations: from Continuous to Discrete / H. Nagoya, B. Grammaticos, A. Ramani // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 16 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT nagoyah quantumpainleveequationsfromcontinuoustodiscrete
AT grammaticosb quantumpainleveequationsfromcontinuoustodiscrete
AT ramania quantumpainleveequationsfromcontinuoustodiscrete
first_indexed 2023-05-20T17:32:01Z
last_indexed 2023-05-20T17:32:01Z
_version_ 1796153501341974528