Quantum Painlevé Equations: from Continuous to Discrete
We examine quantum extensions of the continuous Painlevé equations, expressed as systems of first-order differential equations for non-commuting objects. We focus on the Painlevé equations II, IV and V. From their auto-Bäcklund transformations we derive the contiguity relations which we interpret as...
Збережено в:
Дата: | 2008 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2008
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/149030 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Quantum Painlevé Equations: from Continuous to Discrete / H. Nagoya, B. Grammaticos, A. Ramani // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 16 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-149030 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1490302019-02-20T01:28:36Z Quantum Painlevé Equations: from Continuous to Discrete Nagoya, H. Grammaticos, B. Ramani, A. We examine quantum extensions of the continuous Painlevé equations, expressed as systems of first-order differential equations for non-commuting objects. We focus on the Painlevé equations II, IV and V. From their auto-Bäcklund transformations we derive the contiguity relations which we interpret as the quantum analogues of the discrete Painlevé equations. 2008 Article Quantum Painlevé Equations: from Continuous to Discrete / H. Nagoya, B. Grammaticos, A. Ramani // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 16 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 34M55; 37K55; 81S99 http://dspace.nbuv.gov.ua/handle/123456789/149030 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We examine quantum extensions of the continuous Painlevé equations, expressed as systems of first-order differential equations for non-commuting objects. We focus on the Painlevé equations II, IV and V. From their auto-Bäcklund transformations we derive the contiguity relations which we interpret as the quantum analogues of the discrete Painlevé equations. |
format |
Article |
author |
Nagoya, H. Grammaticos, B. Ramani, A. |
spellingShingle |
Nagoya, H. Grammaticos, B. Ramani, A. Quantum Painlevé Equations: from Continuous to Discrete Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Nagoya, H. Grammaticos, B. Ramani, A. |
author_sort |
Nagoya, H. |
title |
Quantum Painlevé Equations: from Continuous to Discrete |
title_short |
Quantum Painlevé Equations: from Continuous to Discrete |
title_full |
Quantum Painlevé Equations: from Continuous to Discrete |
title_fullStr |
Quantum Painlevé Equations: from Continuous to Discrete |
title_full_unstemmed |
Quantum Painlevé Equations: from Continuous to Discrete |
title_sort |
quantum painlevé equations: from continuous to discrete |
publisher |
Інститут математики НАН України |
publishDate |
2008 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/149030 |
citation_txt |
Quantum Painlevé Equations: from Continuous to Discrete / H. Nagoya, B. Grammaticos, A. Ramani // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 16 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT nagoyah quantumpainleveequationsfromcontinuoustodiscrete AT grammaticosb quantumpainleveequationsfromcontinuoustodiscrete AT ramania quantumpainleveequationsfromcontinuoustodiscrete |
first_indexed |
2023-05-20T17:32:01Z |
last_indexed |
2023-05-20T17:32:01Z |
_version_ |
1796153501341974528 |