Twin ''Fano-Snowflakes'' over the Smallest Ring of Ternions

Given a finite associative ring with unity, R, any free (left) cyclic submodule (FCS) generated by a unimodular (n + 1)-tuple of elements of R represents a point of the n-dimensional projective space over R. Suppose that R also features FCSs generated by (n + 1)-tuples that are not unimodular: what...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2008
Автори: Saniga, M., Havlicek, H., Planat, M., Pracna, P.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2008
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/149031
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Twin ''Fano-Snowflakes'' over the Smallest Ring of Ternions / M. Saniga, H. Havlicek, M. Planat, P. Pracna // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 25 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-149031
record_format dspace
spelling irk-123456789-1490312019-02-20T01:28:49Z Twin ''Fano-Snowflakes'' over the Smallest Ring of Ternions Saniga, M. Havlicek, H. Planat, M. Pracna, P. Given a finite associative ring with unity, R, any free (left) cyclic submodule (FCS) generated by a unimodular (n + 1)-tuple of elements of R represents a point of the n-dimensional projective space over R. Suppose that R also features FCSs generated by (n + 1)-tuples that are not unimodular: what kind of geometry can be ascribed to such FCSs? Here, we (partially) answer this question for n = 2 when R is the (unique) non-commutative ring of order eight. The corresponding geometry is dubbed a ''Fano-Snowflake'' due to its diagrammatic appearance and the fact that it contains the Fano plane in its center. There exist, in fact, two such configurations – each being tied to either of the two maximal ideals of the ring – which have the Fano plane in common and can, therefore, be viewed as twins. Potential relevance of these noteworthy configurations to quantum information theory and stringy black holes is also outlined. 2008 Article Twin ''Fano-Snowflakes'' over the Smallest Ring of Ternions / M. Saniga, H. Havlicek, M. Planat, P. Pracna // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 25 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 51C05; 51Exx http://dspace.nbuv.gov.ua/handle/123456789/149031 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Given a finite associative ring with unity, R, any free (left) cyclic submodule (FCS) generated by a unimodular (n + 1)-tuple of elements of R represents a point of the n-dimensional projective space over R. Suppose that R also features FCSs generated by (n + 1)-tuples that are not unimodular: what kind of geometry can be ascribed to such FCSs? Here, we (partially) answer this question for n = 2 when R is the (unique) non-commutative ring of order eight. The corresponding geometry is dubbed a ''Fano-Snowflake'' due to its diagrammatic appearance and the fact that it contains the Fano plane in its center. There exist, in fact, two such configurations – each being tied to either of the two maximal ideals of the ring – which have the Fano plane in common and can, therefore, be viewed as twins. Potential relevance of these noteworthy configurations to quantum information theory and stringy black holes is also outlined.
format Article
author Saniga, M.
Havlicek, H.
Planat, M.
Pracna, P.
spellingShingle Saniga, M.
Havlicek, H.
Planat, M.
Pracna, P.
Twin ''Fano-Snowflakes'' over the Smallest Ring of Ternions
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Saniga, M.
Havlicek, H.
Planat, M.
Pracna, P.
author_sort Saniga, M.
title Twin ''Fano-Snowflakes'' over the Smallest Ring of Ternions
title_short Twin ''Fano-Snowflakes'' over the Smallest Ring of Ternions
title_full Twin ''Fano-Snowflakes'' over the Smallest Ring of Ternions
title_fullStr Twin ''Fano-Snowflakes'' over the Smallest Ring of Ternions
title_full_unstemmed Twin ''Fano-Snowflakes'' over the Smallest Ring of Ternions
title_sort twin ''fano-snowflakes'' over the smallest ring of ternions
publisher Інститут математики НАН України
publishDate 2008
url http://dspace.nbuv.gov.ua/handle/123456789/149031
citation_txt Twin ''Fano-Snowflakes'' over the Smallest Ring of Ternions / M. Saniga, H. Havlicek, M. Planat, P. Pracna // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 25 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT sanigam twinfanosnowflakesoverthesmallestringofternions
AT havlicekh twinfanosnowflakesoverthesmallestringofternions
AT planatm twinfanosnowflakesoverthesmallestringofternions
AT pracnap twinfanosnowflakesoverthesmallestringofternions
first_indexed 2023-05-20T17:32:02Z
last_indexed 2023-05-20T17:32:02Z
_version_ 1796153501447880704