Geodesic Equations on Diffeomorphism Groups

We bring together those systems of hydrodynamical type that can be written as geodesic equations on diffeomorphism groups or on extensions of diffeomorphism groups with right invariant L² or H¹ metrics. We present their formal derivation starting from Euler's equation, the first order equation...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2008
Автор: Vizman, C.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2008
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/149033
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Geodesic Equations on Diffeomorphism Groups / C. Vizman // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 63 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-149033
record_format dspace
spelling irk-123456789-1490332019-02-20T01:29:03Z Geodesic Equations on Diffeomorphism Groups Vizman, C. We bring together those systems of hydrodynamical type that can be written as geodesic equations on diffeomorphism groups or on extensions of diffeomorphism groups with right invariant L² or H¹ metrics. We present their formal derivation starting from Euler's equation, the first order equation satisfied by the right logarithmic derivative of a geodesic in Lie groups with right invariant metrics. 2008 Article Geodesic Equations on Diffeomorphism Groups / C. Vizman // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 63 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 58D05; 35Q35 http://dspace.nbuv.gov.ua/handle/123456789/149033 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We bring together those systems of hydrodynamical type that can be written as geodesic equations on diffeomorphism groups or on extensions of diffeomorphism groups with right invariant L² or H¹ metrics. We present their formal derivation starting from Euler's equation, the first order equation satisfied by the right logarithmic derivative of a geodesic in Lie groups with right invariant metrics.
format Article
author Vizman, C.
spellingShingle Vizman, C.
Geodesic Equations on Diffeomorphism Groups
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Vizman, C.
author_sort Vizman, C.
title Geodesic Equations on Diffeomorphism Groups
title_short Geodesic Equations on Diffeomorphism Groups
title_full Geodesic Equations on Diffeomorphism Groups
title_fullStr Geodesic Equations on Diffeomorphism Groups
title_full_unstemmed Geodesic Equations on Diffeomorphism Groups
title_sort geodesic equations on diffeomorphism groups
publisher Інститут математики НАН України
publishDate 2008
url http://dspace.nbuv.gov.ua/handle/123456789/149033
citation_txt Geodesic Equations on Diffeomorphism Groups / C. Vizman // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 63 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT vizmanc geodesicequationsondiffeomorphismgroups
first_indexed 2023-05-20T17:32:02Z
last_indexed 2023-05-20T17:32:02Z
_version_ 1796153513341878272