Geodesic Equations on Diffeomorphism Groups
We bring together those systems of hydrodynamical type that can be written as geodesic equations on diffeomorphism groups or on extensions of diffeomorphism groups with right invariant L² or H¹ metrics. We present their formal derivation starting from Euler's equation, the first order equation...
Збережено в:
Дата: | 2008 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2008
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/149033 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Geodesic Equations on Diffeomorphism Groups / C. Vizman // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 63 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-149033 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1490332019-02-20T01:29:03Z Geodesic Equations on Diffeomorphism Groups Vizman, C. We bring together those systems of hydrodynamical type that can be written as geodesic equations on diffeomorphism groups or on extensions of diffeomorphism groups with right invariant L² or H¹ metrics. We present their formal derivation starting from Euler's equation, the first order equation satisfied by the right logarithmic derivative of a geodesic in Lie groups with right invariant metrics. 2008 Article Geodesic Equations on Diffeomorphism Groups / C. Vizman // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 63 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 58D05; 35Q35 http://dspace.nbuv.gov.ua/handle/123456789/149033 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We bring together those systems of hydrodynamical type that can be written as geodesic equations on diffeomorphism groups or on extensions of diffeomorphism groups with right invariant L² or H¹ metrics. We present their formal derivation starting from Euler's equation, the first order equation satisfied by the right logarithmic derivative of a geodesic in Lie groups with right invariant metrics. |
format |
Article |
author |
Vizman, C. |
spellingShingle |
Vizman, C. Geodesic Equations on Diffeomorphism Groups Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Vizman, C. |
author_sort |
Vizman, C. |
title |
Geodesic Equations on Diffeomorphism Groups |
title_short |
Geodesic Equations on Diffeomorphism Groups |
title_full |
Geodesic Equations on Diffeomorphism Groups |
title_fullStr |
Geodesic Equations on Diffeomorphism Groups |
title_full_unstemmed |
Geodesic Equations on Diffeomorphism Groups |
title_sort |
geodesic equations on diffeomorphism groups |
publisher |
Інститут математики НАН України |
publishDate |
2008 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/149033 |
citation_txt |
Geodesic Equations on Diffeomorphism Groups / C. Vizman // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 63 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT vizmanc geodesicequationsondiffeomorphismgroups |
first_indexed |
2023-05-20T17:32:02Z |
last_indexed |
2023-05-20T17:32:02Z |
_version_ |
1796153513341878272 |