Reductions of Multicomponent mKdV Equations on Symmetric Spaces of DIII-Type

New reductions for the multicomponent modified Korteweg-de Vries (MMKdV) equations on the symmetric spaces of DIII-type are derived using the approach based on the reduction group introduced by A.V. Mikhailov. The relevant inverse scattering problem is studied and reduced to a Riemann-Hilbert proble...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2008
Автори: Gerdjikov, V.S., Kostov, N.A.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2008
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/149036
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Reductions of Multicomponent mKdV Equations on Symmetric Spaces of DIII-Type / V.S. Gerdjikov, N.A. Kostov // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 30 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-149036
record_format dspace
spelling irk-123456789-1490362019-02-20T01:29:04Z Reductions of Multicomponent mKdV Equations on Symmetric Spaces of DIII-Type Gerdjikov, V.S. Kostov, N.A. New reductions for the multicomponent modified Korteweg-de Vries (MMKdV) equations on the symmetric spaces of DIII-type are derived using the approach based on the reduction group introduced by A.V. Mikhailov. The relevant inverse scattering problem is studied and reduced to a Riemann-Hilbert problem. The minimal sets of scattering data Ti, i = 1, 2 which allow one to reconstruct uniquely both the scattering matrix and the potential of the Lax operator are defined. The effect of the new reductions on the hierarchy of Hamiltonian structures of MMKdV and on Ti are studied. We illustrate our results by the MMKdV equations related to the algebra g @ so(8) and derive several new MMKdV-type equations using group of reductions isomorphic to Z₂, Z₃, Z₄. 2008 Article Reductions of Multicomponent mKdV Equations on Symmetric Spaces of DIII-Type / V.S. Gerdjikov, N.A. Kostov // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 30 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 37K20; 35Q51; 74J30; 78A60 http://dspace.nbuv.gov.ua/handle/123456789/149036 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description New reductions for the multicomponent modified Korteweg-de Vries (MMKdV) equations on the symmetric spaces of DIII-type are derived using the approach based on the reduction group introduced by A.V. Mikhailov. The relevant inverse scattering problem is studied and reduced to a Riemann-Hilbert problem. The minimal sets of scattering data Ti, i = 1, 2 which allow one to reconstruct uniquely both the scattering matrix and the potential of the Lax operator are defined. The effect of the new reductions on the hierarchy of Hamiltonian structures of MMKdV and on Ti are studied. We illustrate our results by the MMKdV equations related to the algebra g @ so(8) and derive several new MMKdV-type equations using group of reductions isomorphic to Z₂, Z₃, Z₄.
format Article
author Gerdjikov, V.S.
Kostov, N.A.
spellingShingle Gerdjikov, V.S.
Kostov, N.A.
Reductions of Multicomponent mKdV Equations on Symmetric Spaces of DIII-Type
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Gerdjikov, V.S.
Kostov, N.A.
author_sort Gerdjikov, V.S.
title Reductions of Multicomponent mKdV Equations on Symmetric Spaces of DIII-Type
title_short Reductions of Multicomponent mKdV Equations on Symmetric Spaces of DIII-Type
title_full Reductions of Multicomponent mKdV Equations on Symmetric Spaces of DIII-Type
title_fullStr Reductions of Multicomponent mKdV Equations on Symmetric Spaces of DIII-Type
title_full_unstemmed Reductions of Multicomponent mKdV Equations on Symmetric Spaces of DIII-Type
title_sort reductions of multicomponent mkdv equations on symmetric spaces of diii-type
publisher Інститут математики НАН України
publishDate 2008
url http://dspace.nbuv.gov.ua/handle/123456789/149036
citation_txt Reductions of Multicomponent mKdV Equations on Symmetric Spaces of DIII-Type / V.S. Gerdjikov, N.A. Kostov // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 30 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT gerdjikovvs reductionsofmulticomponentmkdvequationsonsymmetricspacesofdiiitype
AT kostovna reductionsofmulticomponentmkdvequationsonsymmetricspacesofdiiitype
first_indexed 2023-05-20T17:32:02Z
last_indexed 2023-05-20T17:32:02Z
_version_ 1796153513447784448