Integrable String Models in Terms of Chiral Invariants of SU(n), SO(n), SP(n) Groups

We considered two types of string models: on the Riemmann space of string coordinates with null torsion and on the Riemman-Cartan space of string coordinates with constant torsion. We used the hydrodynamic approach of Dubrovin, Novikov to integrable systems and Dubrovin solutions of WDVV associativi...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2008
Автор: Gershun, V.D.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2008
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/149042
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Integrable String Models in Terms of Chiral Invariants of SU(n), SO(n), SP(n) Groups / V.D. Gershun // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 30 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-149042
record_format dspace
spelling irk-123456789-1490422019-02-20T01:28:36Z Integrable String Models in Terms of Chiral Invariants of SU(n), SO(n), SP(n) Groups Gershun, V.D. We considered two types of string models: on the Riemmann space of string coordinates with null torsion and on the Riemman-Cartan space of string coordinates with constant torsion. We used the hydrodynamic approach of Dubrovin, Novikov to integrable systems and Dubrovin solutions of WDVV associativity equation to construct new integrable string equations of hydrodynamic type on the torsionless Riemmann space of chiral currents in first case. We used the invariant local chiral currents of principal chiral models for SU(n), SO(n), SP(n) groups to construct new integrable string equations of hydrodynamic type on the Riemmann space of the chiral primitive invariant currents and on the chiral non-primitive Casimir operators as Hamiltonians in second case. We also used Pohlmeyer tensor nonlocal currents to construct new nonlocal string equation. 2008 Article Integrable String Models in Terms of Chiral Invariants of SU(n), SO(n), SP(n) Groups / V.D. Gershun // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 30 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 81T20; 81T30; 81T40; 37J35; 53Z05; 22E70 http://dspace.nbuv.gov.ua/handle/123456789/149042 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We considered two types of string models: on the Riemmann space of string coordinates with null torsion and on the Riemman-Cartan space of string coordinates with constant torsion. We used the hydrodynamic approach of Dubrovin, Novikov to integrable systems and Dubrovin solutions of WDVV associativity equation to construct new integrable string equations of hydrodynamic type on the torsionless Riemmann space of chiral currents in first case. We used the invariant local chiral currents of principal chiral models for SU(n), SO(n), SP(n) groups to construct new integrable string equations of hydrodynamic type on the Riemmann space of the chiral primitive invariant currents and on the chiral non-primitive Casimir operators as Hamiltonians in second case. We also used Pohlmeyer tensor nonlocal currents to construct new nonlocal string equation.
format Article
author Gershun, V.D.
spellingShingle Gershun, V.D.
Integrable String Models in Terms of Chiral Invariants of SU(n), SO(n), SP(n) Groups
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Gershun, V.D.
author_sort Gershun, V.D.
title Integrable String Models in Terms of Chiral Invariants of SU(n), SO(n), SP(n) Groups
title_short Integrable String Models in Terms of Chiral Invariants of SU(n), SO(n), SP(n) Groups
title_full Integrable String Models in Terms of Chiral Invariants of SU(n), SO(n), SP(n) Groups
title_fullStr Integrable String Models in Terms of Chiral Invariants of SU(n), SO(n), SP(n) Groups
title_full_unstemmed Integrable String Models in Terms of Chiral Invariants of SU(n), SO(n), SP(n) Groups
title_sort integrable string models in terms of chiral invariants of su(n), so(n), sp(n) groups
publisher Інститут математики НАН України
publishDate 2008
url http://dspace.nbuv.gov.ua/handle/123456789/149042
citation_txt Integrable String Models in Terms of Chiral Invariants of SU(n), SO(n), SP(n) Groups / V.D. Gershun // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 30 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT gershunvd integrablestringmodelsintermsofchiralinvariantsofsunsonspngroups
first_indexed 2023-05-20T17:32:03Z
last_indexed 2023-05-20T17:32:03Z
_version_ 1796153502291984384