Integrable String Models in Terms of Chiral Invariants of SU(n), SO(n), SP(n) Groups
We considered two types of string models: on the Riemmann space of string coordinates with null torsion and on the Riemman-Cartan space of string coordinates with constant torsion. We used the hydrodynamic approach of Dubrovin, Novikov to integrable systems and Dubrovin solutions of WDVV associativi...
Збережено в:
Дата: | 2008 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2008
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/149042 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Integrable String Models in Terms of Chiral Invariants of SU(n), SO(n), SP(n) Groups / V.D. Gershun // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 30 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-149042 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1490422019-02-20T01:28:36Z Integrable String Models in Terms of Chiral Invariants of SU(n), SO(n), SP(n) Groups Gershun, V.D. We considered two types of string models: on the Riemmann space of string coordinates with null torsion and on the Riemman-Cartan space of string coordinates with constant torsion. We used the hydrodynamic approach of Dubrovin, Novikov to integrable systems and Dubrovin solutions of WDVV associativity equation to construct new integrable string equations of hydrodynamic type on the torsionless Riemmann space of chiral currents in first case. We used the invariant local chiral currents of principal chiral models for SU(n), SO(n), SP(n) groups to construct new integrable string equations of hydrodynamic type on the Riemmann space of the chiral primitive invariant currents and on the chiral non-primitive Casimir operators as Hamiltonians in second case. We also used Pohlmeyer tensor nonlocal currents to construct new nonlocal string equation. 2008 Article Integrable String Models in Terms of Chiral Invariants of SU(n), SO(n), SP(n) Groups / V.D. Gershun // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 30 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 81T20; 81T30; 81T40; 37J35; 53Z05; 22E70 http://dspace.nbuv.gov.ua/handle/123456789/149042 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We considered two types of string models: on the Riemmann space of string coordinates with null torsion and on the Riemman-Cartan space of string coordinates with constant torsion. We used the hydrodynamic approach of Dubrovin, Novikov to integrable systems and Dubrovin solutions of WDVV associativity equation to construct new integrable string equations of hydrodynamic type on the torsionless Riemmann space of chiral currents in first case. We used the invariant local chiral currents of principal chiral models for SU(n), SO(n), SP(n) groups to construct new integrable string equations of hydrodynamic type on the Riemmann space of the chiral primitive invariant currents and on the chiral non-primitive Casimir operators as Hamiltonians in second case. We also used Pohlmeyer tensor nonlocal currents to construct new nonlocal string equation. |
format |
Article |
author |
Gershun, V.D. |
spellingShingle |
Gershun, V.D. Integrable String Models in Terms of Chiral Invariants of SU(n), SO(n), SP(n) Groups Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Gershun, V.D. |
author_sort |
Gershun, V.D. |
title |
Integrable String Models in Terms of Chiral Invariants of SU(n), SO(n), SP(n) Groups |
title_short |
Integrable String Models in Terms of Chiral Invariants of SU(n), SO(n), SP(n) Groups |
title_full |
Integrable String Models in Terms of Chiral Invariants of SU(n), SO(n), SP(n) Groups |
title_fullStr |
Integrable String Models in Terms of Chiral Invariants of SU(n), SO(n), SP(n) Groups |
title_full_unstemmed |
Integrable String Models in Terms of Chiral Invariants of SU(n), SO(n), SP(n) Groups |
title_sort |
integrable string models in terms of chiral invariants of su(n), so(n), sp(n) groups |
publisher |
Інститут математики НАН України |
publishDate |
2008 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/149042 |
citation_txt |
Integrable String Models in Terms of Chiral Invariants of SU(n), SO(n), SP(n) Groups / V.D. Gershun // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 30 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT gershunvd integrablestringmodelsintermsofchiralinvariantsofsunsonspngroups |
first_indexed |
2023-05-20T17:32:03Z |
last_indexed |
2023-05-20T17:32:03Z |
_version_ |
1796153502291984384 |