Nonlinear Fokker-Planck Equation in the Model of Asset Returns

The Fokker-Planck equation with diffusion coefficient quadratic in space variable, linear drift coefficient, and nonlocal nonlinearity term is considered in the framework of a model of analysis of asset returns at financial markets. For special cases of such a Fokker-Planck equation we describe a co...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2008
Автори: Shapovalov, A., Trifonov, A., Masalova, E.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2008
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/149046
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Nonlinear Fokker-Planck Equation in the Model of Asset Returns / A. Shapovalov, A. Trifonov, E. Masalova // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 16 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:The Fokker-Planck equation with diffusion coefficient quadratic in space variable, linear drift coefficient, and nonlocal nonlinearity term is considered in the framework of a model of analysis of asset returns at financial markets. For special cases of such a Fokker-Planck equation we describe a construction of exact solution of the Cauchy problem. In the general case, we construct the leading term of the Cauchy problem solution asymptotic in a formal small parameter in semiclassical approximation following the complex WKB-Maslov method in the class of trajectory concentrated functions.