Geometric Realizations of Bi-Hamiltonian Completely Integrable Systems
In this paper we present an overview of the connection between completely integrable systems and the background geometry of the flow. This relation is better seen when using a group-based concept of moving frame introduced by Fels and Olver in [Acta Appl. Math. 51 (1998), 161-213; 55 (1999), 127-208...
Збережено в:
Дата: | 2008 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2008
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/149050 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Geometric Realizations of Bi-Hamiltonian Completely Integrable Systems / G.M. Beffa // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 51 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-149050 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1490502019-02-20T01:28:40Z Geometric Realizations of Bi-Hamiltonian Completely Integrable Systems Beffa, G.M. In this paper we present an overview of the connection between completely integrable systems and the background geometry of the flow. This relation is better seen when using a group-based concept of moving frame introduced by Fels and Olver in [Acta Appl. Math. 51 (1998), 161-213; 55 (1999), 127-208]. The paper discusses the close connection between different types of geometries and the type of equations they realize. In particular, we describe the direct relation between symmetric spaces and equations of KdV-type, and the possible geometric origins of this connection. 2008 Article Geometric Realizations of Bi-Hamiltonian Completely Integrable Systems / G.M. Beffa // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 51 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 37K25; 53A55 http://dspace.nbuv.gov.ua/handle/123456789/149050 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
In this paper we present an overview of the connection between completely integrable systems and the background geometry of the flow. This relation is better seen when using a group-based concept of moving frame introduced by Fels and Olver in [Acta Appl. Math. 51 (1998), 161-213; 55 (1999), 127-208]. The paper discusses the close connection between different types of geometries and the type of equations they realize. In particular, we describe the direct relation between symmetric spaces and equations of KdV-type, and the possible geometric origins of this connection. |
format |
Article |
author |
Beffa, G.M. |
spellingShingle |
Beffa, G.M. Geometric Realizations of Bi-Hamiltonian Completely Integrable Systems Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Beffa, G.M. |
author_sort |
Beffa, G.M. |
title |
Geometric Realizations of Bi-Hamiltonian Completely Integrable Systems |
title_short |
Geometric Realizations of Bi-Hamiltonian Completely Integrable Systems |
title_full |
Geometric Realizations of Bi-Hamiltonian Completely Integrable Systems |
title_fullStr |
Geometric Realizations of Bi-Hamiltonian Completely Integrable Systems |
title_full_unstemmed |
Geometric Realizations of Bi-Hamiltonian Completely Integrable Systems |
title_sort |
geometric realizations of bi-hamiltonian completely integrable systems |
publisher |
Інститут математики НАН України |
publishDate |
2008 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/149050 |
citation_txt |
Geometric Realizations of Bi-Hamiltonian Completely Integrable Systems / G.M. Beffa // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 51 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT beffagm geometricrealizationsofbihamiltoniancompletelyintegrablesystems |
first_indexed |
2023-05-20T17:32:05Z |
last_indexed |
2023-05-20T17:32:05Z |
_version_ |
1796153514187030528 |