Investigation of nonequilibrium in plasma of ARC discharge between melting electrodes
In this paper, the different scenarios of experimental data treatment are considered, which may lead to contrary conclusions about the possibility of realization of a local thermodynamic equilibrium in the plasma. In particular, the level of detail of the plasma components of free-burning in air e...
Saved in:
Date: | 2018 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Published: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2018
|
Series: | Вопросы атомной науки и техники |
Subjects: | |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/149066 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Investigation of nonequilibrium in plasma of ARC discharge between melting electrodes / S.O. Fesenko, M.M. Kleshich, A.N. Veklich // Вопросы атомной науки и техники. — 2018. — № 6. — С. 274-277. — Бібліогр.: 12 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-149066 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1490662019-02-20T01:24:59Z Investigation of nonequilibrium in plasma of ARC discharge between melting electrodes Fesenko, S.O. Kleshich, M.M. Veklich, A.N. Низкотемпературная плазма и плазменные технологии In this paper, the different scenarios of experimental data treatment are considered, which may lead to contrary conclusions about the possibility of realization of a local thermodynamic equilibrium in the plasma. In particular, the level of detail of the plasma components of free-burning in air electric arc (in particular, account of molecule of nitric oxide) have an effect on the region of nonequilibrium in the discharge plasma at arc current of 3.5A. Розглядаються різні сценарії обробки експериментальних даних, які можуть призвести до протилежних висновків щодо можливості реалізації в плазмі локальної термодинамічної рівноваги. Зокрема, ступінь деталізації компонент у плазмі, вільноіснуючої в повітрі електричної дуги (а саме, врахування молекули окису азоту), впливає на достовірність визначення межі області нерівноважності в плазмі електродугового розряду силою струму 3,5 А. Рассматриваются разные сценарии обработки экспериментальных данных, которые могут привести к противоположным выводам о возможности реализации в плазме локального термодинамического равновесия. В частности, степень детализации компонент в плазме свободногорящей в воздухе электрической дуги (а именно, учет молекулы окиси азота), влияет на достоверность определения границы области неравновесности в плазме электродугового разряда силой тока 3,5 А. 2018 Article Investigation of nonequilibrium in plasma of ARC discharge between melting electrodes / S.O. Fesenko, M.M. Kleshich, A.N. Veklich // Вопросы атомной науки и техники. — 2018. — № 6. — С. 274-277. — Бібліогр.: 12 назв. — англ. 1562-6016 PACS: 52.70.-m, 52.80.Mg http://dspace.nbuv.gov.ua/handle/123456789/149066 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Низкотемпературная плазма и плазменные технологии Низкотемпературная плазма и плазменные технологии |
spellingShingle |
Низкотемпературная плазма и плазменные технологии Низкотемпературная плазма и плазменные технологии Fesenko, S.O. Kleshich, M.M. Veklich, A.N. Investigation of nonequilibrium in plasma of ARC discharge between melting electrodes Вопросы атомной науки и техники |
description |
In this paper, the different scenarios of experimental data treatment are considered, which may lead to contrary
conclusions about the possibility of realization of a local thermodynamic equilibrium in the plasma. In particular, the
level of detail of the plasma components of free-burning in air electric arc (in particular, account of molecule of
nitric oxide) have an effect on the region of nonequilibrium in the discharge plasma at arc current of 3.5A. |
format |
Article |
author |
Fesenko, S.O. Kleshich, M.M. Veklich, A.N. |
author_facet |
Fesenko, S.O. Kleshich, M.M. Veklich, A.N. |
author_sort |
Fesenko, S.O. |
title |
Investigation of nonequilibrium in plasma of ARC discharge between melting electrodes |
title_short |
Investigation of nonequilibrium in plasma of ARC discharge between melting electrodes |
title_full |
Investigation of nonequilibrium in plasma of ARC discharge between melting electrodes |
title_fullStr |
Investigation of nonequilibrium in plasma of ARC discharge between melting electrodes |
title_full_unstemmed |
Investigation of nonequilibrium in plasma of ARC discharge between melting electrodes |
title_sort |
investigation of nonequilibrium in plasma of arc discharge between melting electrodes |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2018 |
topic_facet |
Низкотемпературная плазма и плазменные технологии |
url |
http://dspace.nbuv.gov.ua/handle/123456789/149066 |
citation_txt |
Investigation of nonequilibrium in plasma of ARC discharge between melting electrodes / S.O. Fesenko, M.M. Kleshich, A.N. Veklich // Вопросы атомной науки и техники. — 2018. — № 6. — С. 274-277. — Бібліогр.: 12 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT fesenkoso investigationofnonequilibriuminplasmaofarcdischargebetweenmeltingelectrodes AT kleshichmm investigationofnonequilibriuminplasmaofarcdischargebetweenmeltingelectrodes AT veklichan investigationofnonequilibriuminplasmaofarcdischargebetweenmeltingelectrodes |
first_indexed |
2025-07-12T21:00:40Z |
last_indexed |
2025-07-12T21:00:40Z |
_version_ |
1837476409686097920 |
fulltext |
ISSN 1562-6016. ВАНТ. 2018. №6(118)
274 PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2018, № 6. Series: Plasma Physics (118), p. 274-277.
INVESTIGATION OF NONEQUILIBRIUM IN PLASMA OF ARC
DISCHARGE BETWEEN MELTING ELECTRODES
S.O. Fesenko, M.M. Kleshich, A.N. Veklich
Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
E-mail: van@univ.kiev.ua; fesenko.freks@gmail.com
In this paper, the different scenarios of experimental data treatment are considered, which may lead to contrary
conclusions about the possibility of realization of a local thermodynamic equilibrium in the plasma. In particular, the
level of detail of the plasma components of free-burning in air electric arc (in particular, account of molecule of
nitric oxide) have an effect on the region of nonequilibrium in the discharge plasma at arc current of 3.5A.
PACS: 52.70.-m, 52.80.Mg
INTRODUCTION
It is well known, the reliability of switching devices
depends on the quality of the electrical contacts, in par-
ticular, on the erosion resistance of such contacts’ material
[1]. Among the factors contributing to the destruction of
the contact, first of all, it is necessary to note the arc dis-
charge arising when the inductive load is breaking. The-
refore, the special requirements, sometimes contradictory,
are introduced to the material of the contacts, the main
ones of which are low contact resistance and resistance to
erosion [2]. The estimation of erosion resistance can be
carried out by direct and indirect techniques. As the last
one technique, the measurement of electrode material
vapour content in plasma of discharge gap can be conside-
red. Usually, optical spectroscopy is used to estimate the
plasma parameters, in particular, concentration of some
kind species in plasma. Usually, optical spectroscopy is
used to estimate the plasma parameters, in particular, con-
centration of some kind particles in plasma. In this case, it
is important to know whether the plasma is in the state of
the local thermodynamic equilibrium (LTE).
It is known that the deviation of the LTE in arc
discharge plasma can be caused by various reasons. For
example, in paper [3], a deviation from equilibrium is
considered due to the overpopulation of atomic levels
by radiation (hence, the Boltzmann distribution is
disturbed). It is also known [4] that non-equilibrium of
plasma can be due to a decrease in the frequency of
collisions of electrons with heavy particles (a case of
non-isothermal plasma when the Maxwell distributions
for electrons and heavy particles are characterized by
different temperatures). Under conditions of air plasma
of atmospheric pressure, this phenomenon is observed,
first of all, at the periphery of discharge. Additionally,
the deviations from ionization equilibrium and from the
mass action law for the dissociation of molecular gases
(which are described by the Saha and Guldberg-Waage
equations) can be realized as well [5, 6]. Therefore, the
aim of this paper is the study of additional factors, which
can be able to have an influence on validity of conclusions
about the realization of a local thermodynamic equilibrium
in the plasma of electric arc discharge in air between
melting electrodes at arc current of 3.5 A.
1. EXPERIMENTAL INVESTIGATIONS
The free burning electric arc at current of 3.5 A was
ignited in air between the end surfaces of the non-
cooled electrodes [7]. The diameter of the rod electrodes
was 6 mm and discharge gap was 8 mm. Electrodes
were positioned vertically. The upper copper electrode
is used as a cathode, and the lower one (anode) is made
of Ag(70 %)-Ni(30 %) composite material [8].
To determine the plasma temperature in [9], the
Boltzmann plots method was used. The electron density
was determined by solving the energy balance equation
[10]. This method involves a preliminary determination
of the radial temperature distribution and measurement
of the electric field strength of the positive column [11].
Monochromator MDR-12 with 3000-pixels CCD
linear image sensor (B/W) Sony ILX526A was used to
fast scanning of radial distribution of spectral intensity.
Due to the instability of the discharge, statistical
averaging of the recorded spatial distributions of the
radiation characteristics was carried out.
2. CALCULATION OF PLASMA
EQUILIBRIUM COMPOSITION
The calculation of the component composition of the
plasma in the air atmosphere with the impurities of
copper, silver, and nickel vapours is performed on the
base of the predefined radial distributions of the
temperature T(r) (Fig. 1) and the electron density Ne(r)
(Fig. 2). In addition, radial profiles of spectral lines’
intensities are used. These intensities are measured for
spectral lines (Fig. 3) of copper ICu, silver IAg, and nickel
INi in arbitrary units for only one selected wavelength of
radiation per element.
Fig. 1. Temperature radial distribution in plasma of
arc discharge of 3.5 A current between asymmetric
Cu- and Ag-Ni-electrodes
mailto:van@univ.kiev.ua
ISSN 1562-6016. ВАНТ. 2018. №6(118) 275
Fig. 2. Electron density radial distribution of electric
arc discharge plasma of 3.5 A current between the
asymmetric Cu- and Ag-Ni-electrodes
Fig. 3. Radial intensity profiles of spectral lines in the
arc discharge plasma of 3.5 A current between
asymmetric Cu- and Ag-Ni-electrodes
To calculate the component composition on the base
of the aforementioned parameters, the following set of
equations is solved.
1) Saha equation: e
A
+Ae NT,S=
N
NN
, (1)
where Ne is the electron density, NA+ – the density of ionized
atoms or molecules of the species 'A', NA is the density of
atoms or molecules of the species 'A', S is the Saha function
for atomic or molecule of the species 'A', which takes into
account the reduction of the ionization potential in form
[12]: 3106,9 39 mN=eVΔE e , where T is
temperature and 'A' means, in our case, the following
atoms and molecules: N, N2, NO, O, O2, Cu, Ag, Ni.
2) Dissociation equation for nitrogen, oxygen and
nitrogen oxide molecules:
TD=
N
N
N2
N
N
2
2
,
TD=
N
N
O2
O
O
2
2
, TD=
N
NN
NO
NO
ON , (2)
where D(T) are the chemical equilibrium constants.
3) Mass conservation for air atmosphere:
+NN+NN+NONO
+OO+OO
N+N+N+N=N+N
+N+N+N+N
2
2
2
2
222,72
223,72
(3)
.
4) The equation of electroneutrality:
+Ni+Ag+Cu+O
+O+NO+
2
N+Ne
N+N+N+N
+N+N+N+N=N
2
(4)
.
5) The perfect gas low:
kT
P
=N+N+N+
N+N+N+N+N+N
NiAgCu
OO2NONN2e2
,
(5)
where P – atmospheric pressure.
To solve the system, it is necessary to define
additionally the radial profile of the ratio between the
densities of various metals atoms. With this aim, the
intensities of at least one wavelength λAg, λCu, λNi in the
radiation of each metal component in the plasma were
experimentally measured in the assumption of
Boltzmann population distribution of the atom levels of
these metals (that is, one of the requirements of the
existence of LTE in plasma). Then, the radial profile of
the ratio between the three components in the plasma
(silver, copper, and nickel atoms) α(r) becomes as
follows:
rα=
kT
E
Ngf
UλI
kT
E
Ngf
UλI
=
kT
E
Ngf
UλI
Ni
Cu
CuCu
CuCuCuAg
AgAg
AgAgAg
Ni
Ni
Ni
3
NiNi
33
exp
expexp
.
(6)
In order to test the validation of assumption of LTE in
plasma, the system (1) – (6) is solved once again with
other input parameters: temperature, intensities of the
spectral lines ICu, IAg and INi and the ratio between the
components of metals for the axial point of the discharge,
which is represented in the form of (6) (i.e., α(0)). The
results of the calculation, namely, the obtained radial
density profile was compared with the experimentally
determined. The spatial region of the discharge in which
both profiles coincide (within the error of the
experiment) can be treated as equilibrium. The
difference between these profiles indicates a deviation
from LTE, the reason for which may be the violation of
equilibrium processes (not only of Boltzmann
distribution, but also can be caused by nonequilibrium
of ionization and dissociation processes etc.).
In Fig. 4 the calculated composition of arc discharge
plasma with impurities of Cu, Ag, Ni vapour is shown.
In Fig. 5 the components that are most important for
electrical conductivity are shown. The analysis of
Figs. 4, 5 shows that the main source of electrons in the
plasma (in this mode) is the thermal ionization not only
of the atoms of silver, copper and nickel, but nitrogen
oxide molecule as well. That is why, in order to
determine the effect of NO+ ions on the formation of the
valid equilibrium zone of discharge (the border of the
LTE along the radius of the arc), the calculation was
carried out for both cases, namely, with account of this
molecule in plasma composition and without it as well.
276 ISSN 1562-6016. ВАНТ. 2018. №6(118)
For comparison, in Fig. 6 the plasma composition is
shown without account of nitrogen oxide. One can see,
that the increase of metal ions is evident, especially in
the arc periphery. In Fig. 7 the components that are most
important for electrical conductivity without account of
NO molecule are shown. In Figs. 8, 9 the calculated
electron density without account and with account of
nitrogen oxide ions for different sets of spectral line
intensities as initial data is shown. Additionally, the
profiles of the experimentally determined electron
density exp Ne and its error (± 30 %), in the form of the
upper Ne
sup and the lower Ne
inf boundary are shown in
these figures. Calculated curves of electron density
calc Ne
1 are obtained with handling of a set of spectral
lines Cu I 510.5 nm, Ag I 520.9 nm, Ni I 464.8 nm; and
curves calc Ne
2 are obtained with handling of an
alternative set of spectral lines Cu I 515.3 nm, Ag I
520.9 nm, Ni I 547.6 nm.
Fig. 4. Component composition of arc discharge plasma
with a current of 3.5 A with the impurities of copper
vapor, silver and nickel
Fig. 5. Electron density and most important ions of arc
discharge plasma between composite Cu-
and Ag-Ni-electrodes
As it follows from analyze of Figs. 8, 9, in case of
the neglecting of nitrogen oxide ions in plasma
composition LTE appears to be disturbed at a distance
of 1.5 mm from the axis of discharge, whereas, the
account of these ions leads to the equilibrium, which
remains even up to 2.4 mm. In last case, obviously, the
ionization of nitrogen oxide molecule significantly
affects the value of the electron density and the
realization of LTE in plasma, especially, at the arc
periphery.
However, it should be noted that at high discharge
currents, in the conditions of temperature increase, the
contribution of the ionization of nitrogen oxide becomes
not so noticeable.
Fig. 6. Component composition of arc discharge plasma
with a current of 3.5 A with impurities of copper vapor,
silver and nickel without account of nitrogen oxide
Fig. 7. Electron density and most important ions of arc
discharge plasma between composite Cu- and Ag-Ni-
electrodes without account of NO molecule
Fig. 8. Electron density of arc plasma of 3.5 A current
between Cu- andAg-Ni-electrodes
(without account of NO+)
ISSN 1562-6016. ВАНТ. 2018. №6(118) 277
Fig. 9. Electron density of arc plasma of 3.5 A current
between Cu- and Ag-Ni-electrodes
(with account of NO+)
CONCLUSIONS
The level of detail of components in the calculation of
the plasma composition of electric arc between melting
electrodes in the air have an effect on the validity of
conclusion on plasma equilibrium in some areas of the
discharge. In particular, the account of the NO molecule
and its ion NO+ in the plasma composition indicates the
realization of the local thermodynamic equilibrium in the
relatively low temperature plasma region at the discharge
periphery. The account of these molecules is especially
important in the study of the thermodynamic state of a
plasma of a free-burning electric arc with metal vapour
impurities at the current of 3.5 A.
REFERENCES
1. V.Ya. Berent, S.A. Gnezdilov. Improvement of perfor-
mance of current collectors on the carbon base // Friction
and Lubrication in machines and mechanisms. 2009, v. 2, p.
18-23
2. V.Ya. Berent, S.A. Gnezdilov. Enhancement of current
collectors on the carbon base of electric trains // Friction and
lubrication of machinery. 2008, № 8, p. 9-15.
3. V.A. Zhovtyansky. Non-equilibrium of dense arc dis-
charge plasma caused by the transfer of resonant radiation //
News of higher educational institutions: chemistry and
chemical technology. 2012, v. 55, № 4, p. 4-9.
4. Yu.P. Raizer. Physics of gas discharge // Educational
manual for high schools. M.: “Science”, 1992, 536 p.
5. WU Ze-Qing, PANG Jin-Qiao, HAN Guo-Xing,
YAN Jun Ionization Balance in Non-Local-
Thermodynamic-Equilibrium Plasmas // Chinese Physical
Society and IOP Publishing Ltd. 2004, p. 877-880.
6. V. Boretskij, A. Veklich, Y. Cressault, A. Gleizes,
Ph. Teulet. Non-equilibrium plasma properties of electric arc
discharge in air between copper electrodes // Problems of
Atomic Science and Technology. Series “Plasma Physics”
(18). 2012, № 6, p. 181-183.
7. A. Veklich, A. Lebid. Technique of electric arc discharge
plasma diagnostic: peculiarities of registration and treatment
of spectra // Bulletin of Taras Shevchenko National Universi-
ty of Kyiv. Series “Radiophysics and Electronics”. 2012,
№ 18, p. 6 -9.
8. A. Veklich, M. Kleshich, S. Fesenko, V. Boretskij,
Y. Cressault, Ph. Teulet. Investigation of electric arc dis-
charge plasma between one-component Cu and Ni and
composite Ag-Ni electrodes // Problems of Atomic Science
and Technology. Series “Plasma Physics.” 2017, v. 107,
№ 1, p. 171-174.
9. V.F. Boretskij, Y. Cressault, Ph. Teulet, A.N. Veklich.
Plasma of electric arc discharge in carbon dioxide with cop-
per vapours // XIX th Symposium on Physics of Switching
Arc (FSO 2011). Brno, Czech Republic. September, 5-9.
2011, p. 121-124.
10. A. Veklich, S. Fesenko, V. Boretskij, Y. Cressault,
A. Gleizes, Ph. Teulet, Y. Bondarenko, L. Kryachko. Ther-
mal plasma of electric arc discharge in air between compo-
site Cu–C electrodes // Problems of Atomic Science and
Technology. Series “Plasma Physics” (20). 2014, № 6,
p. 226-229.
11. A.N. Veklich, S.O. Fesenko, V.F. Boretskij,
M.M. Kleshich. Measuring of the electric field of a positive
column in arc discharges // XI International Scientific Con-
ference “Electronics and Applied Physics”. Taras
Shevchenko National University of Kiev. Faculty of Radio
Physics and Computer Systems. Kyiv, Ukraine. October, 21-
24. 2015, p. 149-150.
12. J. Richter. Plasma Diagnostics / Edited by W. Lochte-
Holtgreven. North-Holland: “Publishing Company”, 1968,
932 p.
Article received 16.10.2018
ИССЛЕДОВАНИЕ НЕРАВНОВЕСНОСТИ В ПЛАЗМЕ ЭЛЕКТРОДУГОВОГО РАЗРЯДА МЕЖДУ
ПЛАВЯЩИМИСЯ ЭЛЕКТРОДАМИ
С.А. Фесенко, М.М. Клешич, А.Н. Веклич
Рассматриваются разные сценарии обработки экспериментальных данных, которые могут привести к
противоположным выводам о возможности реализации в плазме локального термодинамического
равновесия. В частности, степень детализации компонент в плазме свободногорящей в воздухе
электрической дуги (а именно, учет молекулы окиси азота), влияет на достоверность определения границы
области неравновесности в плазме электродугового разряда силой тока 3,5 А.
ДОСЛІДЖЕННЯ НЕРІВНОВАЖНОСТІ В ПЛАЗМІ ЕЛЕКТРОДУГОВОГО РОЗРЯДУ
МІЖ ПЛАВКИМИ ЕЛЕКТРОДАМИ
С.О. Фесенко, М.М. Клешич, А.М. Веклич
Розглядаються різні сценарії обробки експериментальних даних, які можуть призвести до протилежних
висновків щодо можливості реалізації в плазмі локальної термодинамічної рівноваги. Зокрема, ступінь
деталізації компонент у плазмі, вільноіснуючої в повітрі електричної дуги (а саме, врахування молекули
окису азоту), впливає на достовірність визначення межі області нерівноважності в плазмі електродугового
розряду силою струму 3,5 А.
|