On Projective Equivalence of Univariate Polynomial Subspaces

We pose and solve the equivalence problem for subspaces of Pn, the (n+1) dimensional vector space of univariate polynomials of degree ≤ n. The group of interest is SL2 acting by projective transformations on the Grassmannian variety GkPn of k-dimensional subspaces. We establish the equivariance of t...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2009
Автори: Crooks, P., Milson, R.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2009
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/149100
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On Projective Equivalence of Univariate Polynomial Subspaces / P. Crooks, R. Milson // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 20 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:We pose and solve the equivalence problem for subspaces of Pn, the (n+1) dimensional vector space of univariate polynomials of degree ≤ n. The group of interest is SL2 acting by projective transformations on the Grassmannian variety GkPn of k-dimensional subspaces. We establish the equivariance of the Wronski map and use this map to reduce the subspace equivalence problem to the equivalence problem for binary forms.