On Projective Equivalence of Univariate Polynomial Subspaces
We pose and solve the equivalence problem for subspaces of Pn, the (n+1) dimensional vector space of univariate polynomials of degree ≤ n. The group of interest is SL2 acting by projective transformations on the Grassmannian variety GkPn of k-dimensional subspaces. We establish the equivariance of t...
Збережено в:
Дата: | 2009 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2009
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/149100 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | On Projective Equivalence of Univariate Polynomial Subspaces / P. Crooks, R. Milson // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 20 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-149100 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1491002019-02-20T01:26:23Z On Projective Equivalence of Univariate Polynomial Subspaces Crooks, P. Milson, R. We pose and solve the equivalence problem for subspaces of Pn, the (n+1) dimensional vector space of univariate polynomials of degree ≤ n. The group of interest is SL2 acting by projective transformations on the Grassmannian variety GkPn of k-dimensional subspaces. We establish the equivariance of the Wronski map and use this map to reduce the subspace equivalence problem to the equivalence problem for binary forms. 2009 Article On Projective Equivalence of Univariate Polynomial Subspaces / P. Crooks, R. Milson // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 20 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 14M15; 15A72; 34A30; 58K05 http://dspace.nbuv.gov.ua/handle/123456789/149100 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We pose and solve the equivalence problem for subspaces of Pn, the (n+1) dimensional vector space of univariate polynomials of degree ≤ n. The group of interest is SL2 acting by projective transformations on the Grassmannian variety GkPn of k-dimensional subspaces. We establish the equivariance of the Wronski map and use this map to reduce the subspace equivalence problem to the equivalence problem for binary forms. |
format |
Article |
author |
Crooks, P. Milson, R. |
spellingShingle |
Crooks, P. Milson, R. On Projective Equivalence of Univariate Polynomial Subspaces Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Crooks, P. Milson, R. |
author_sort |
Crooks, P. |
title |
On Projective Equivalence of Univariate Polynomial Subspaces |
title_short |
On Projective Equivalence of Univariate Polynomial Subspaces |
title_full |
On Projective Equivalence of Univariate Polynomial Subspaces |
title_fullStr |
On Projective Equivalence of Univariate Polynomial Subspaces |
title_full_unstemmed |
On Projective Equivalence of Univariate Polynomial Subspaces |
title_sort |
on projective equivalence of univariate polynomial subspaces |
publisher |
Інститут математики НАН України |
publishDate |
2009 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/149100 |
citation_txt |
On Projective Equivalence of Univariate Polynomial Subspaces / P. Crooks, R. Milson // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 20 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT crooksp onprojectiveequivalenceofunivariatepolynomialsubspaces AT milsonr onprojectiveequivalenceofunivariatepolynomialsubspaces |
first_indexed |
2023-05-20T17:32:08Z |
last_indexed |
2023-05-20T17:32:08Z |
_version_ |
1796153520110436352 |