On Projective Equivalence of Univariate Polynomial Subspaces

We pose and solve the equivalence problem for subspaces of Pn, the (n+1) dimensional vector space of univariate polynomials of degree ≤ n. The group of interest is SL2 acting by projective transformations on the Grassmannian variety GkPn of k-dimensional subspaces. We establish the equivariance of t...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2009
Автори: Crooks, P., Milson, R.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2009
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/149100
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On Projective Equivalence of Univariate Polynomial Subspaces / P. Crooks, R. Milson // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 20 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-149100
record_format dspace
spelling irk-123456789-1491002019-02-20T01:26:23Z On Projective Equivalence of Univariate Polynomial Subspaces Crooks, P. Milson, R. We pose and solve the equivalence problem for subspaces of Pn, the (n+1) dimensional vector space of univariate polynomials of degree ≤ n. The group of interest is SL2 acting by projective transformations on the Grassmannian variety GkPn of k-dimensional subspaces. We establish the equivariance of the Wronski map and use this map to reduce the subspace equivalence problem to the equivalence problem for binary forms. 2009 Article On Projective Equivalence of Univariate Polynomial Subspaces / P. Crooks, R. Milson // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 20 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 14M15; 15A72; 34A30; 58K05 http://dspace.nbuv.gov.ua/handle/123456789/149100 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We pose and solve the equivalence problem for subspaces of Pn, the (n+1) dimensional vector space of univariate polynomials of degree ≤ n. The group of interest is SL2 acting by projective transformations on the Grassmannian variety GkPn of k-dimensional subspaces. We establish the equivariance of the Wronski map and use this map to reduce the subspace equivalence problem to the equivalence problem for binary forms.
format Article
author Crooks, P.
Milson, R.
spellingShingle Crooks, P.
Milson, R.
On Projective Equivalence of Univariate Polynomial Subspaces
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Crooks, P.
Milson, R.
author_sort Crooks, P.
title On Projective Equivalence of Univariate Polynomial Subspaces
title_short On Projective Equivalence of Univariate Polynomial Subspaces
title_full On Projective Equivalence of Univariate Polynomial Subspaces
title_fullStr On Projective Equivalence of Univariate Polynomial Subspaces
title_full_unstemmed On Projective Equivalence of Univariate Polynomial Subspaces
title_sort on projective equivalence of univariate polynomial subspaces
publisher Інститут математики НАН України
publishDate 2009
url http://dspace.nbuv.gov.ua/handle/123456789/149100
citation_txt On Projective Equivalence of Univariate Polynomial Subspaces / P. Crooks, R. Milson // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 20 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT crooksp onprojectiveequivalenceofunivariatepolynomialsubspaces
AT milsonr onprojectiveequivalenceofunivariatepolynomialsubspaces
first_indexed 2023-05-20T17:32:08Z
last_indexed 2023-05-20T17:32:08Z
_version_ 1796153520110436352