Bethe Ansatz Solutions to Quasi Exactly Solvable Difference Equations

Bethe ansatz formulation is presented for several explicit examples of quasi exactly solvable difference equations of one degree of freedom which are introduced recently by one of the present authors. These equations are deformation of the well-known exactly solvable difference equations of the Meix...

Повний опис

Збережено в:
Бібліографічні деталі
Видавець:Інститут математики НАН України
Дата:2009
Автори: Sasaki, Ryu, Yang, Wen-Li, Zhang, Yao-Zhong
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2009
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/149104
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Цитувати:Bethe Ansatz Solutions to Quasi Exactly Solvable Difference Equations / Ryu Sasaki, Wen-Li Yang, Yao-Zhong Zhang // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 24 назв. — англ.

Репозиторії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Bethe ansatz formulation is presented for several explicit examples of quasi exactly solvable difference equations of one degree of freedom which are introduced recently by one of the present authors. These equations are deformation of the well-known exactly solvable difference equations of the Meixner-Pollaczek, continuous Hahn, continuous dual Hahn, Wilson and Askey-Wilson polynomials. Up to an overall factor of the so-called pseudo ground state wavefunction, the eigenfunctions within the exactly solvable subspace are given by polynomials whose roots are solutions of the associated Bethe ansatz equations. The corresponding eigenvalues are expressed in terms of these roots.