Isomorphism of Intransitive Linear Lie Equations
We show that formal isomorphism of intransitive linear Lie equations along transversal to the orbits can be extended to neighborhoods of these transversal. In analytic cases, the word formal is dropped from theorems. Also, we associate an intransitive Lie algebra with each intransitive linear Lie eq...
Збережено в:
Дата: | 2009 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2009
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/149105 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Isomorphism of Intransitive Linear Lie Equations / Jose Miguel Martins Veloso // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 27 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-149105 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1491052019-02-20T01:25:51Z Isomorphism of Intransitive Linear Lie Equations Veloso, Jose Miguel Martins We show that formal isomorphism of intransitive linear Lie equations along transversal to the orbits can be extended to neighborhoods of these transversal. In analytic cases, the word formal is dropped from theorems. Also, we associate an intransitive Lie algebra with each intransitive linear Lie equation, and from the intransitive Lie algebra we recover the linear Lie equation, unless of formal isomorphism. The intransitive Lie algebra gives the structure functions introduced by É. Cartan. 2009 Article Isomorphism of Intransitive Linear Lie Equations / Jose Miguel Martins Veloso // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 27 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 58H05; 58H10 http://dspace.nbuv.gov.ua/handle/123456789/149105 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We show that formal isomorphism of intransitive linear Lie equations along transversal to the orbits can be extended to neighborhoods of these transversal. In analytic cases, the word formal is dropped from theorems. Also, we associate an intransitive Lie algebra with each intransitive linear Lie equation, and from the intransitive Lie algebra we recover the linear Lie equation, unless of formal isomorphism. The intransitive Lie algebra gives the structure functions introduced by É. Cartan. |
format |
Article |
author |
Veloso, Jose Miguel Martins |
spellingShingle |
Veloso, Jose Miguel Martins Isomorphism of Intransitive Linear Lie Equations Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Veloso, Jose Miguel Martins |
author_sort |
Veloso, Jose Miguel Martins |
title |
Isomorphism of Intransitive Linear Lie Equations |
title_short |
Isomorphism of Intransitive Linear Lie Equations |
title_full |
Isomorphism of Intransitive Linear Lie Equations |
title_fullStr |
Isomorphism of Intransitive Linear Lie Equations |
title_full_unstemmed |
Isomorphism of Intransitive Linear Lie Equations |
title_sort |
isomorphism of intransitive linear lie equations |
publisher |
Інститут математики НАН України |
publishDate |
2009 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/149105 |
citation_txt |
Isomorphism of Intransitive Linear Lie Equations / Jose Miguel Martins Veloso // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 27 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT velosojosemiguelmartins isomorphismofintransitivelinearlieequations |
first_indexed |
2023-05-20T17:32:09Z |
last_indexed |
2023-05-20T17:32:09Z |
_version_ |
1796153520638918656 |