Isomorphism of Intransitive Linear Lie Equations

We show that formal isomorphism of intransitive linear Lie equations along transversal to the orbits can be extended to neighborhoods of these transversal. In analytic cases, the word formal is dropped from theorems. Also, we associate an intransitive Lie algebra with each intransitive linear Lie eq...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2009
Автор: Veloso, Jose Miguel Martins
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2009
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/149105
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Isomorphism of Intransitive Linear Lie Equations / Jose Miguel Martins Veloso // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 27 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-149105
record_format dspace
spelling irk-123456789-1491052019-02-20T01:25:51Z Isomorphism of Intransitive Linear Lie Equations Veloso, Jose Miguel Martins We show that formal isomorphism of intransitive linear Lie equations along transversal to the orbits can be extended to neighborhoods of these transversal. In analytic cases, the word formal is dropped from theorems. Also, we associate an intransitive Lie algebra with each intransitive linear Lie equation, and from the intransitive Lie algebra we recover the linear Lie equation, unless of formal isomorphism. The intransitive Lie algebra gives the structure functions introduced by É. Cartan. 2009 Article Isomorphism of Intransitive Linear Lie Equations / Jose Miguel Martins Veloso // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 27 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 58H05; 58H10 http://dspace.nbuv.gov.ua/handle/123456789/149105 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We show that formal isomorphism of intransitive linear Lie equations along transversal to the orbits can be extended to neighborhoods of these transversal. In analytic cases, the word formal is dropped from theorems. Also, we associate an intransitive Lie algebra with each intransitive linear Lie equation, and from the intransitive Lie algebra we recover the linear Lie equation, unless of formal isomorphism. The intransitive Lie algebra gives the structure functions introduced by É. Cartan.
format Article
author Veloso, Jose Miguel Martins
spellingShingle Veloso, Jose Miguel Martins
Isomorphism of Intransitive Linear Lie Equations
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Veloso, Jose Miguel Martins
author_sort Veloso, Jose Miguel Martins
title Isomorphism of Intransitive Linear Lie Equations
title_short Isomorphism of Intransitive Linear Lie Equations
title_full Isomorphism of Intransitive Linear Lie Equations
title_fullStr Isomorphism of Intransitive Linear Lie Equations
title_full_unstemmed Isomorphism of Intransitive Linear Lie Equations
title_sort isomorphism of intransitive linear lie equations
publisher Інститут математики НАН України
publishDate 2009
url http://dspace.nbuv.gov.ua/handle/123456789/149105
citation_txt Isomorphism of Intransitive Linear Lie Equations / Jose Miguel Martins Veloso // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 27 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT velosojosemiguelmartins isomorphismofintransitivelinearlieequations
first_indexed 2023-05-20T17:32:09Z
last_indexed 2023-05-20T17:32:09Z
_version_ 1796153520638918656