2025-02-23T13:58:27-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-149110%22&qt=morelikethis&rows=5
2025-02-23T13:58:27-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-149110%22&qt=morelikethis&rows=5
2025-02-23T13:58:27-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T13:58:27-05:00 DEBUG: Deserialized SOLR response

Cryptohermitian Picture of Scattering Using Quasilocal Metric Operators

One-dimensional unitary scattering controlled by non-Hermitian (typically, PT-symmetric) quantum Hamiltonians H ≠ H† is considered. Treating these operators via Runge-Kutta approximation, our three-Hilbert-space formulation of quantum theory is reviewed as explaining the unitarity of scattering. Our...

Full description

Saved in:
Bibliographic Details
Main Author: Znojil, M.
Format: Article
Language:English
Published: Інститут математики НАН України 2009
Series:Symmetry, Integrability and Geometry: Methods and Applications
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/149110
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:One-dimensional unitary scattering controlled by non-Hermitian (typically, PT-symmetric) quantum Hamiltonians H ≠ H† is considered. Treating these operators via Runge-Kutta approximation, our three-Hilbert-space formulation of quantum theory is reviewed as explaining the unitarity of scattering. Our recent paper on bound states [Znojil M., SIGMA 5 (2009), 001, 19 pages, arXiv:0901.0700] is complemented by the text on scattering. An elementary example illustrates the feasibility of the resulting innovative theoretical recipe. A new family of the so called quasilocal inner products in Hilbert space is found to exist. Constructively, these products are all described in terms of certain non-equivalent short-range metric operators Θ ≠ I represented, in Runge-Kutta approximation, by (2R–1)-diagonal matrices.