Indefinite Affine Hyperspheres Admitting a Pointwise Symmetry. Part 2
An affine hypersurface M is said to admit a pointwise symmetry, if there exists a subgroup G of Aut(TpM) for all p ∈ M, which preserves (pointwise) the affine metric h, the difference tensor K and the affine shape operator S. Here, we consider 3-dimensional indefinite affine hyperspheres, i.e. S = H...
Збережено в:
Дата: | 2009 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2009
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/149115 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Indefinite Affine Hyperspheres Admitting a Pointwise Symmetry. Part 2 / C. Scharlach // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 14 назв. — англ. |
Репозиторії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | An affine hypersurface M is said to admit a pointwise symmetry, if there exists a subgroup G of Aut(TpM) for all p ∈ M, which preserves (pointwise) the affine metric h, the difference tensor K and the affine shape operator S. Here, we consider 3-dimensional indefinite affine hyperspheres, i.e. S = HId (and thus S is trivially preserved). In Part 1 we found the possible symmetry groups G and gave for each G a canonical form of K. We started a classification by showing that hyperspheres admitting a pointwise Z₂ × Z₂ resp. R-symmetry are well-known, they have constant sectional curvature and Pick invariant J < 0 resp. J = 0. Here, we continue with affine hyperspheres admitting a pointwise Z₃- or SO(2)-symmetry. They turn out to be warped products of affine spheres (Z₃) or quadrics (SO(2)) with a curve. |
---|