Classification of Finite Dimensional Modular Lie Superalgebras with Indecomposable Cartan Matrix

Finite dimensional modular Lie superalgebras over algebraically closed fields with indecomposable Cartan matrices are classified under some technical, most probably inessential, hypotheses. If the Cartan matrix is invertible, the corresponding Lie superalgebra is simple otherwise the quotient of the...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2009
Автори: Bouarroudj, S., Grozman, P., Leites, D.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2009
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/149116
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Classification of Finite Dimensional Modular Lie Superalgebras with Indecomposable Cartan Matrix / S. Bouarroudj, P. Grozman, D. Leites // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 54 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-149116
record_format dspace
spelling irk-123456789-1491162019-02-20T01:27:15Z Classification of Finite Dimensional Modular Lie Superalgebras with Indecomposable Cartan Matrix Bouarroudj, S. Grozman, P. Leites, D. Finite dimensional modular Lie superalgebras over algebraically closed fields with indecomposable Cartan matrices are classified under some technical, most probably inessential, hypotheses. If the Cartan matrix is invertible, the corresponding Lie superalgebra is simple otherwise the quotient of the derived Lie superalgebra modulo center is simple (if its rank is greater than 1). Eleven new exceptional simple modular Lie superalgebras are discovered. Several features of classic notions, or notions themselves, are clarified or introduced, e.g., Cartan matrix, several versions of restrictedness in characteristic 2, Dynkin diagram, Chevalley generators, and even the notion of Lie superalgebra if the characteristic is equal to 2. Interesting phenomena in characteristic 2: (1) all simple Lie superalgebras with Cartan matrix are obtained from simple Lie algebras with Cartan matrix by declaring several (any) of its Chevalley generators odd; (2) there exist simple Lie superalgebras whose even parts are solvable. The Lie superalgebras of fixed points of automorphisms corresponding to the symmetries of Dynkin diagrams are also listed and their simple subquotients described. 2009 Article Classification of Finite Dimensional Modular Lie Superalgebras with Indecomposable Cartan Matrix / S. Bouarroudj, P. Grozman, D. Leites // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 54 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 17B50; 70F25 http://dspace.nbuv.gov.ua/handle/123456789/149116 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Finite dimensional modular Lie superalgebras over algebraically closed fields with indecomposable Cartan matrices are classified under some technical, most probably inessential, hypotheses. If the Cartan matrix is invertible, the corresponding Lie superalgebra is simple otherwise the quotient of the derived Lie superalgebra modulo center is simple (if its rank is greater than 1). Eleven new exceptional simple modular Lie superalgebras are discovered. Several features of classic notions, or notions themselves, are clarified or introduced, e.g., Cartan matrix, several versions of restrictedness in characteristic 2, Dynkin diagram, Chevalley generators, and even the notion of Lie superalgebra if the characteristic is equal to 2. Interesting phenomena in characteristic 2: (1) all simple Lie superalgebras with Cartan matrix are obtained from simple Lie algebras with Cartan matrix by declaring several (any) of its Chevalley generators odd; (2) there exist simple Lie superalgebras whose even parts are solvable. The Lie superalgebras of fixed points of automorphisms corresponding to the symmetries of Dynkin diagrams are also listed and their simple subquotients described.
format Article
author Bouarroudj, S.
Grozman, P.
Leites, D.
spellingShingle Bouarroudj, S.
Grozman, P.
Leites, D.
Classification of Finite Dimensional Modular Lie Superalgebras with Indecomposable Cartan Matrix
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Bouarroudj, S.
Grozman, P.
Leites, D.
author_sort Bouarroudj, S.
title Classification of Finite Dimensional Modular Lie Superalgebras with Indecomposable Cartan Matrix
title_short Classification of Finite Dimensional Modular Lie Superalgebras with Indecomposable Cartan Matrix
title_full Classification of Finite Dimensional Modular Lie Superalgebras with Indecomposable Cartan Matrix
title_fullStr Classification of Finite Dimensional Modular Lie Superalgebras with Indecomposable Cartan Matrix
title_full_unstemmed Classification of Finite Dimensional Modular Lie Superalgebras with Indecomposable Cartan Matrix
title_sort classification of finite dimensional modular lie superalgebras with indecomposable cartan matrix
publisher Інститут математики НАН України
publishDate 2009
url http://dspace.nbuv.gov.ua/handle/123456789/149116
citation_txt Classification of Finite Dimensional Modular Lie Superalgebras with Indecomposable Cartan Matrix / S. Bouarroudj, P. Grozman, D. Leites // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 54 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT bouarroudjs classificationoffinitedimensionalmodularliesuperalgebraswithindecomposablecartanmatrix
AT grozmanp classificationoffinitedimensionalmodularliesuperalgebraswithindecomposablecartanmatrix
AT leitesd classificationoffinitedimensionalmodularliesuperalgebraswithindecomposablecartanmatrix
first_indexed 2023-05-20T17:32:22Z
last_indexed 2023-05-20T17:32:22Z
_version_ 1796153521801789440