Factor-Group-Generated Polar Spaces and (Multi-)Qudits
Recently, a number of interesting relations have been discovered between generalised Pauli/Dirac groups and certain finite geometries. Here, we succeeded in finding a general unifying framework for all these relations. We introduce gradually necessary and sufficient conditions to be met in order to...
Збережено в:
Дата: | 2009 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2009
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/149117 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Factor-Group-Generated Polar Spaces and (Multi-)Qudits / H. Havlicek, B. Odehnal, M. Saniga // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 32 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Recently, a number of interesting relations have been discovered between generalised Pauli/Dirac groups and certain finite geometries. Here, we succeeded in finding a general unifying framework for all these relations. We introduce gradually necessary and sufficient conditions to be met in order to carry out the following programme: Given a group G, we first construct vector spaces over GF(p), p a prime, by factorising G over appropriate normal subgroups. Then, by expressing GF(p) in terms of the commutator subgroup of G, we construct alternating bilinear forms, which reflect whether or not two elements of G commute. Restricting to p = 2, we search for ''refinements'' in terms of quadratic forms, which capture the fact whether or not the order of an element of G is ≤ 2. Such factor-group-generated vector spaces admit a natural reinterpretation in the language of symplectic and orthogonal polar spaces, where each point becomes a ''condensation'' of several distinct elements of G. Finally, several well-known physical examples (single- and two-qubit Pauli groups, both the real and complex case) are worked out in detail to illustrate the fine traits of the formalism. |
---|