Non-Hermitian Quantum Systems and Time-Optimal Quantum Evolution
Recently, Bender et al. have considered the quantum brachistochrone problem for the non-Hermitian PT-symmetric quantum system and have shown that the optimal time evolution required to transform a given initial state |ψi> into a specific final state |ψf> can be made arbitrarily small. Addition...
Збережено в:
Дата: | 2009 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2009
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/149118 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Non-Hermitian Quantum Systems and Time-Optimal Quantum Evolution / A.I. Nesterov // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 42 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Recently, Bender et al. have considered the quantum brachistochrone problem for the non-Hermitian PT-symmetric quantum system and have shown that the optimal time evolution required to transform a given initial state |ψi> into a specific final state |ψf> can be made arbitrarily small. Additionally, it has been shown that finding the shortest possible time requires only the solution of the two-dimensional problem for the quantum system governed by the effective Hamiltonian acting in the subspace spanned by |ψi> and |ψf>. In this paper, we study a similar problem for the generic non-Hermitian Hamiltonian, focusing our attention on the geometric aspects of the problem. |
---|