Compact Riemannian Manifolds with Homogeneous Geodesics
A homogeneous Riemannian space (M = G/H,g) is called a geodesic orbit space (shortly, GO-space) if any geodesic is an orbit of one-parameter subgroup of the isometry group G. We study the structure of compact GO-spaces and give some sufficient conditions for existence and non-existence of an invaria...
Збережено в:
Дата: | 2009 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2009
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/149121 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Compact Riemannian Manifolds with Homogeneous Geodesics / D.V. Alekseevsky, Y.G. Nikonorov // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 28 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | A homogeneous Riemannian space (M = G/H,g) is called a geodesic orbit space (shortly, GO-space) if any geodesic is an orbit of one-parameter subgroup of the isometry group G. We study the structure of compact GO-spaces and give some sufficient conditions for existence and non-existence of an invariant metric g with homogeneous geodesics on a homogeneous space of a compact Lie group G. We give a classification of compact simply connected GO-spaces (M = G/H,g) of positive Euler characteristic. If the group G is simple and the metric g does not come from a bi-invariant metric of G, then M is one of the flag manifolds M₁ = SO(2n+1)/U(n) or M₂ = Sp(n)/U(1)·Sp(n–1) and g is any invariant metric on M which depends on two real parameters. In both cases, there exists unique (up to a scaling) symmetric metric g₀ such that (M,g0) is the symmetric space M = SO(2n+2)/U(n+1) or, respectively, CP²n⁻¹. The manifolds M₁, M₂ are weakly symmetric spaces. |
---|