2025-02-23T00:06:48-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-149121%22&qt=morelikethis&rows=5
2025-02-23T00:06:48-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-149121%22&qt=morelikethis&rows=5
2025-02-23T00:06:48-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T00:06:48-05:00 DEBUG: Deserialized SOLR response
Compact Riemannian Manifolds with Homogeneous Geodesics
A homogeneous Riemannian space (M = G/H,g) is called a geodesic orbit space (shortly, GO-space) if any geodesic is an orbit of one-parameter subgroup of the isometry group G. We study the structure of compact GO-spaces and give some sufficient conditions for existence and non-existence of an invaria...
Saved in:
Main Authors: | Alekseevsky, D.V., Nikonorov, Y.G. |
---|---|
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
2009
|
Series: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/149121 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
2025-02-23T00:06:48-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&rows=40&rows=5&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-149121%22&qt=morelikethis
2025-02-23T00:06:48-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&rows=40&rows=5&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-149121%22&qt=morelikethis
2025-02-23T00:06:48-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T00:06:48-05:00 DEBUG: Deserialized SOLR response
Similar Items
-
Totally geodesic submanifolds in the tangent bundle of a Riemannian 2-manifold
by: Yampolsky, A.
Published: (2005) -
Geodesically Complete Lorentzian Metrics on Some Homogeneous 3 Manifolds
by: Bromberg, S., et al.
Published: (2008) -
Infinite systems of stochastic differential equations and some lattice models on compact Riemannian manifolds
by: Albeverio, S., et al.
Published: (1997) -
Separability in Riemannian Manifolds
by: Benenti, S.
Published: (2016) -
On prime ends on Riemannian manifolds
by: D. P. Iljutko, et al.
Published: (2018)