Existence and Construction of Vessiot Connections
A rigorous formulation of Vessiot's vector field approach to the analysis of general systems of partial differential equations is provided. It is shown that this approach is equivalent to the formal theory of differential equations and that it can be carried through if, and only if, the given s...
Збережено в:
Дата: | 2009 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2009
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/149123 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Existence and Construction of Vessiot Connections / D. Fesser, W.M. Seiler // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 28 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-149123 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1491232019-02-20T01:26:26Z Existence and Construction of Vessiot Connections Fesser, D. Seiler, W.M. A rigorous formulation of Vessiot's vector field approach to the analysis of general systems of partial differential equations is provided. It is shown that this approach is equivalent to the formal theory of differential equations and that it can be carried through if, and only if, the given system is involutive. As a by-product, we provide a novel characterisation of transversal integral elements via the contact map. 2009 Article Existence and Construction of Vessiot Connections / D. Fesser, W.M. Seiler // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 28 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 35A07; 35A30; 35N99; 58A20 http://dspace.nbuv.gov.ua/handle/123456789/149123 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
A rigorous formulation of Vessiot's vector field approach to the analysis of general systems of partial differential equations is provided. It is shown that this approach is equivalent to the formal theory of differential equations and that it can be carried through if, and only if, the given system is involutive. As a by-product, we provide a novel characterisation of transversal integral elements via the contact map. |
format |
Article |
author |
Fesser, D. Seiler, W.M. |
spellingShingle |
Fesser, D. Seiler, W.M. Existence and Construction of Vessiot Connections Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Fesser, D. Seiler, W.M. |
author_sort |
Fesser, D. |
title |
Existence and Construction of Vessiot Connections |
title_short |
Existence and Construction of Vessiot Connections |
title_full |
Existence and Construction of Vessiot Connections |
title_fullStr |
Existence and Construction of Vessiot Connections |
title_full_unstemmed |
Existence and Construction of Vessiot Connections |
title_sort |
existence and construction of vessiot connections |
publisher |
Інститут математики НАН України |
publishDate |
2009 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/149123 |
citation_txt |
Existence and Construction of Vessiot Connections / D. Fesser, W.M. Seiler // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 28 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT fesserd existenceandconstructionofvessiotconnections AT seilerwm existenceandconstructionofvessiotconnections |
first_indexed |
2023-05-20T17:32:10Z |
last_indexed |
2023-05-20T17:32:10Z |
_version_ |
1796153522545229824 |