A Method for Weight Multiplicity Computation Based on Berezin Quantization
Let G be a compact semisimple Lie group and T be a maximal torus of G. We describe a method for weight multiplicity computation in unitary irreducible representations of G, based on the theory of Berezin quantization on G/T. Let Γhol(Lλ) be the reproducing kernel Hilbert space of holomorphic section...
Збережено в:
Дата: | 2009 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2009
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/149125 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | A Method for Weight Multiplicity Computation Based on Berezin Quantization / D. Bar-Moshe // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 21 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-149125 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1491252019-02-20T01:25:25Z A Method for Weight Multiplicity Computation Based on Berezin Quantization Bar-Moshe, D. Let G be a compact semisimple Lie group and T be a maximal torus of G. We describe a method for weight multiplicity computation in unitary irreducible representations of G, based on the theory of Berezin quantization on G/T. Let Γhol(Lλ) be the reproducing kernel Hilbert space of holomorphic sections of the homogeneous line bundle Lλ over G/T associated with the highest weight λ of the irreducible representation πλ of G. The multiplicity of a weight m in πλ is computed from functional analytical structure of the Berezin symbol of the projector in Γhol(Lλ) onto subspace of weight m. We describe a method of the construction of this symbol and the evaluation of the weight multiplicity as a rank of a Hermitian form. The application of this method is described in a number of examples. 2009 Article A Method for Weight Multiplicity Computation Based on Berezin Quantization / D. Bar-Moshe // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 21 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 22E46; 32M05; 32M10; 53D50; 81Q70 http://dspace.nbuv.gov.ua/handle/123456789/149125 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Let G be a compact semisimple Lie group and T be a maximal torus of G. We describe a method for weight multiplicity computation in unitary irreducible representations of G, based on the theory of Berezin quantization on G/T. Let Γhol(Lλ) be the reproducing kernel Hilbert space of holomorphic sections of the homogeneous line bundle Lλ over G/T associated with the highest weight λ of the irreducible representation πλ of G. The multiplicity of a weight m in πλ is computed from functional analytical structure of the Berezin symbol of the projector in Γhol(Lλ) onto subspace of weight m. We describe a method of the construction of this symbol and the evaluation of the weight multiplicity as a rank of a Hermitian form. The application of this method is described in a number of examples. |
format |
Article |
author |
Bar-Moshe, D. |
spellingShingle |
Bar-Moshe, D. A Method for Weight Multiplicity Computation Based on Berezin Quantization Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Bar-Moshe, D. |
author_sort |
Bar-Moshe, D. |
title |
A Method for Weight Multiplicity Computation Based on Berezin Quantization |
title_short |
A Method for Weight Multiplicity Computation Based on Berezin Quantization |
title_full |
A Method for Weight Multiplicity Computation Based on Berezin Quantization |
title_fullStr |
A Method for Weight Multiplicity Computation Based on Berezin Quantization |
title_full_unstemmed |
A Method for Weight Multiplicity Computation Based on Berezin Quantization |
title_sort |
method for weight multiplicity computation based on berezin quantization |
publisher |
Інститут математики НАН України |
publishDate |
2009 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/149125 |
citation_txt |
A Method for Weight Multiplicity Computation Based on Berezin Quantization / D. Bar-Moshe // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 21 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT barmoshed amethodforweightmultiplicitycomputationbasedonberezinquantization AT barmoshed methodforweightmultiplicitycomputationbasedonberezinquantization |
first_indexed |
2023-05-20T17:32:10Z |
last_indexed |
2023-05-20T17:32:10Z |
_version_ |
1796153522755993600 |