Second-Order Conformally Equivariant Quantization in Dimension 1|2

This paper is the next step of an ambitious program to develop conformally equivariant quantization on supermanifolds. This problem was considered so far in (super)dimensions 1 and 1|1. We will show that the case of several odd variables is much more difficult. We consider the supercircle S1|2 equip...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2009
Автор: Mellouli, N.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2009
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/149129
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Second-Order Conformally Equivariant Quantization in Dimension 1|2 / N. Mellouli // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 14 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-149129
record_format dspace
spelling irk-123456789-1491292019-02-20T01:26:23Z Second-Order Conformally Equivariant Quantization in Dimension 1|2 Mellouli, N. This paper is the next step of an ambitious program to develop conformally equivariant quantization on supermanifolds. This problem was considered so far in (super)dimensions 1 and 1|1. We will show that the case of several odd variables is much more difficult. We consider the supercircle S1|2 equipped with the standard contact structure. The conformal Lie superalgebra K(2) of contact vector fields on S1|2 contains the Lie superalgebra osp(2|2). We study the spaces of linear differential operators on the spaces of weighted densities as modules over osp(2|2). We prove that, in the non-resonant case, the spaces of second order differential operators are isomorphic to the corresponding spaces of symbols as osp(2|2)-modules. We also prove that the conformal equivariant quantization map is unique and calculate its explicit formula. 2009 Article Second-Order Conformally Equivariant Quantization in Dimension 1|2 / N. Mellouli // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 14 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 17B10; 17B68; 53D55 http://dspace.nbuv.gov.ua/handle/123456789/149129 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description This paper is the next step of an ambitious program to develop conformally equivariant quantization on supermanifolds. This problem was considered so far in (super)dimensions 1 and 1|1. We will show that the case of several odd variables is much more difficult. We consider the supercircle S1|2 equipped with the standard contact structure. The conformal Lie superalgebra K(2) of contact vector fields on S1|2 contains the Lie superalgebra osp(2|2). We study the spaces of linear differential operators on the spaces of weighted densities as modules over osp(2|2). We prove that, in the non-resonant case, the spaces of second order differential operators are isomorphic to the corresponding spaces of symbols as osp(2|2)-modules. We also prove that the conformal equivariant quantization map is unique and calculate its explicit formula.
format Article
author Mellouli, N.
spellingShingle Mellouli, N.
Second-Order Conformally Equivariant Quantization in Dimension 1|2
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Mellouli, N.
author_sort Mellouli, N.
title Second-Order Conformally Equivariant Quantization in Dimension 1|2
title_short Second-Order Conformally Equivariant Quantization in Dimension 1|2
title_full Second-Order Conformally Equivariant Quantization in Dimension 1|2
title_fullStr Second-Order Conformally Equivariant Quantization in Dimension 1|2
title_full_unstemmed Second-Order Conformally Equivariant Quantization in Dimension 1|2
title_sort second-order conformally equivariant quantization in dimension 1|2
publisher Інститут математики НАН України
publishDate 2009
url http://dspace.nbuv.gov.ua/handle/123456789/149129
citation_txt Second-Order Conformally Equivariant Quantization in Dimension 1|2 / N. Mellouli // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 14 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT melloulin secondorderconformallyequivariantquantizationindimension12
first_indexed 2023-05-20T17:32:11Z
last_indexed 2023-05-20T17:32:11Z
_version_ 1796153523181715456