Trigonometric Solutions of WDVV Equations and Generalized Calogero-Moser-Sutherland Systems

We consider trigonometric solutions of WDVV equations and derive geometric conditions when a collection of vectors with multiplicities determines such a solution. We incorporate these conditions into the notion of trigonometric Veselov system (∨-system) and we determine all trigonometric ∨-systems w...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2009
Автор: Feigin, M.V.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2009
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/149132
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Trigonometric Solutions of WDVV Equations and Generalized Calogero-Moser-Sutherland Systems / M.V. Feigin // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 16 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-149132
record_format dspace
spelling irk-123456789-1491322019-02-20T01:26:18Z Trigonometric Solutions of WDVV Equations and Generalized Calogero-Moser-Sutherland Systems Feigin, M.V. We consider trigonometric solutions of WDVV equations and derive geometric conditions when a collection of vectors with multiplicities determines such a solution. We incorporate these conditions into the notion of trigonometric Veselov system (∨-system) and we determine all trigonometric ∨-systems with up to five vectors. We show that generalized Calogero-Moser-Sutherland operator admits a factorized eigenfunction if and only if it corresponds to the trigonometric ∨-system; this inverts a one-way implication observed by Veselov for the rational solutions. 2009 Article Trigonometric Solutions of WDVV Equations and Generalized Calogero-Moser-Sutherland Systems / M.V. Feigin // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 16 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 35Q40; 52C99 http://dspace.nbuv.gov.ua/handle/123456789/149132 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We consider trigonometric solutions of WDVV equations and derive geometric conditions when a collection of vectors with multiplicities determines such a solution. We incorporate these conditions into the notion of trigonometric Veselov system (∨-system) and we determine all trigonometric ∨-systems with up to five vectors. We show that generalized Calogero-Moser-Sutherland operator admits a factorized eigenfunction if and only if it corresponds to the trigonometric ∨-system; this inverts a one-way implication observed by Veselov for the rational solutions.
format Article
author Feigin, M.V.
spellingShingle Feigin, M.V.
Trigonometric Solutions of WDVV Equations and Generalized Calogero-Moser-Sutherland Systems
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Feigin, M.V.
author_sort Feigin, M.V.
title Trigonometric Solutions of WDVV Equations and Generalized Calogero-Moser-Sutherland Systems
title_short Trigonometric Solutions of WDVV Equations and Generalized Calogero-Moser-Sutherland Systems
title_full Trigonometric Solutions of WDVV Equations and Generalized Calogero-Moser-Sutherland Systems
title_fullStr Trigonometric Solutions of WDVV Equations and Generalized Calogero-Moser-Sutherland Systems
title_full_unstemmed Trigonometric Solutions of WDVV Equations and Generalized Calogero-Moser-Sutherland Systems
title_sort trigonometric solutions of wdvv equations and generalized calogero-moser-sutherland systems
publisher Інститут математики НАН України
publishDate 2009
url http://dspace.nbuv.gov.ua/handle/123456789/149132
citation_txt Trigonometric Solutions of WDVV Equations and Generalized Calogero-Moser-Sutherland Systems / M.V. Feigin // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 16 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT feiginmv trigonometricsolutionsofwdvvequationsandgeneralizedcalogeromosersutherlandsystems
first_indexed 2023-05-20T17:32:11Z
last_indexed 2023-05-20T17:32:11Z
_version_ 1796153523498385408