Boundaries of Graphs of Harmonic Functions

Harmonic functions u: Rn → Rm are equivalent to integral manifolds of an exterior differential system with independence condition (M,I,ω). To this system one associates the space of conservation laws C. They provide necessary conditions for g: Sn–1 → M to be the boundary of an integral submanifold....

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2009
Автор: Fox, D.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2009
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/149134
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Boundaries of Graphs of Harmonic Functions / D. Fox // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 8 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-149134
record_format dspace
spelling irk-123456789-1491342019-02-20T01:26:38Z Boundaries of Graphs of Harmonic Functions Fox, D. Harmonic functions u: Rn → Rm are equivalent to integral manifolds of an exterior differential system with independence condition (M,I,ω). To this system one associates the space of conservation laws C. They provide necessary conditions for g: Sn–1 → M to be the boundary of an integral submanifold. We show that in a local sense these conditions are also sufficient to guarantee the existence of an integral manifold with boundary g(Sn–1). The proof uses standard linear elliptic theory to produce an integral manifold G: Dn → M and the completeness of the space of conservation laws to show that this candidate has g(Sn–1) as its boundary. As a corollary we obtain a new elementary proof of the characterization of boundaries of holomorphic disks in Cm in the local case. 2009 Article Boundaries of Graphs of Harmonic Functions / D. Fox // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 8 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 35J05; 35J25; 53B25 http://dspace.nbuv.gov.ua/handle/123456789/149134 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Harmonic functions u: Rn → Rm are equivalent to integral manifolds of an exterior differential system with independence condition (M,I,ω). To this system one associates the space of conservation laws C. They provide necessary conditions for g: Sn–1 → M to be the boundary of an integral submanifold. We show that in a local sense these conditions are also sufficient to guarantee the existence of an integral manifold with boundary g(Sn–1). The proof uses standard linear elliptic theory to produce an integral manifold G: Dn → M and the completeness of the space of conservation laws to show that this candidate has g(Sn–1) as its boundary. As a corollary we obtain a new elementary proof of the characterization of boundaries of holomorphic disks in Cm in the local case.
format Article
author Fox, D.
spellingShingle Fox, D.
Boundaries of Graphs of Harmonic Functions
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Fox, D.
author_sort Fox, D.
title Boundaries of Graphs of Harmonic Functions
title_short Boundaries of Graphs of Harmonic Functions
title_full Boundaries of Graphs of Harmonic Functions
title_fullStr Boundaries of Graphs of Harmonic Functions
title_full_unstemmed Boundaries of Graphs of Harmonic Functions
title_sort boundaries of graphs of harmonic functions
publisher Інститут математики НАН України
publishDate 2009
url http://dspace.nbuv.gov.ua/handle/123456789/149134
citation_txt Boundaries of Graphs of Harmonic Functions / D. Fox // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 8 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT foxd boundariesofgraphsofharmonicfunctions
first_indexed 2023-05-20T17:32:23Z
last_indexed 2023-05-20T17:32:23Z
_version_ 1796153523708100608