Holonomy and Projective Equivalence in 4-Dimensional Lorentz Manifolds
A study is made of 4-dimensional Lorentz manifolds which are projectively related, that is, whose Levi-Civita connections give rise to the same (unparameterised) geodesics. A brief review of some relevant recent work is provided and a list of new results connecting projective relatedness and the hol...
Збережено в:
Дата: | 2009 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2009
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/149137 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Holonomy and Projective Equivalence in 4-Dimensional Lorentz Manifolds / G.S. Hall, D.P. Lonie // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 26 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | A study is made of 4-dimensional Lorentz manifolds which are projectively related, that is, whose Levi-Civita connections give rise to the same (unparameterised) geodesics. A brief review of some relevant recent work is provided and a list of new results connecting projective relatedness and the holonomy type of the Lorentz manifold in question is given. This necessitates a review of the possible holonomy groups for such manifolds which, in turn, requires a certain convenient classification of the associated curvature tensors. These reviews are provided. |
---|