On Spinor Varieties and Their Secants
We study the secant variety of the spinor variety, focusing on its equations of degree three and four. We show that in type Dn, cubic equations exist if and only if n ≥ 9. In general the ideal has generators in degrees at least three and four. Finally we observe that the other Freudenthal varieties...
Збережено в:
Дата: | 2009 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2009
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/149143 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | On Spinor Varieties and Their Secants / L. Manivel // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 15 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-149143 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1491432019-02-20T01:25:14Z On Spinor Varieties and Their Secants Manivel, L. We study the secant variety of the spinor variety, focusing on its equations of degree three and four. We show that in type Dn, cubic equations exist if and only if n ≥ 9. In general the ideal has generators in degrees at least three and four. Finally we observe that the other Freudenthal varieties exhibit strikingly similar behaviors. 2009 Article On Spinor Varieties and Their Secants / L. Manivel // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 15 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 14M17; 15A66; 14L35; 14N15 http://dspace.nbuv.gov.ua/handle/123456789/149143 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We study the secant variety of the spinor variety, focusing on its equations of degree three and four. We show that in type Dn, cubic equations exist if and only if n ≥ 9. In general the ideal has generators in degrees at least three and four. Finally we observe that the other Freudenthal varieties exhibit strikingly similar behaviors. |
format |
Article |
author |
Manivel, L. |
spellingShingle |
Manivel, L. On Spinor Varieties and Their Secants Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Manivel, L. |
author_sort |
Manivel, L. |
title |
On Spinor Varieties and Their Secants |
title_short |
On Spinor Varieties and Their Secants |
title_full |
On Spinor Varieties and Their Secants |
title_fullStr |
On Spinor Varieties and Their Secants |
title_full_unstemmed |
On Spinor Varieties and Their Secants |
title_sort |
on spinor varieties and their secants |
publisher |
Інститут математики НАН України |
publishDate |
2009 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/149143 |
citation_txt |
On Spinor Varieties and Their Secants / L. Manivel // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 15 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT manivell onspinorvarietiesandtheirsecants |
first_indexed |
2023-05-20T17:32:25Z |
last_indexed |
2023-05-20T17:32:25Z |
_version_ |
1796153524657061888 |