Quantum Probability, Renormalization and Infinite-Dimensional *-Lie Algebras

The present paper reviews some intriguing connections which link together a new renormalization technique, the theory of *-representations of infinite dimensional *-Lie algebras, quantum probability, white noise and stochastic calculus and the theory of classical and quantum infinitely divisible pro...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2009
Автори: Accardi, L., Boukas, A.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2009
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/149145
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Quantum Probability, Renormalization and Infinite-Dimensional *-Lie Algebras / L. Accardi, A. Boukas // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 60 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-149145
record_format dspace
spelling irk-123456789-1491452019-02-20T01:27:40Z Quantum Probability, Renormalization and Infinite-Dimensional *-Lie Algebras Accardi, L. Boukas, A. The present paper reviews some intriguing connections which link together a new renormalization technique, the theory of *-representations of infinite dimensional *-Lie algebras, quantum probability, white noise and stochastic calculus and the theory of classical and quantum infinitely divisible processes. 2009 Article Quantum Probability, Renormalization and Infinite-Dimensional *-Lie Algebras / L. Accardi, A. Boukas // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 60 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 60H40; 60G51; 81S05; 81S20; 81S25; 81T30; 81T40 http://dspace.nbuv.gov.ua/handle/123456789/149145 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The present paper reviews some intriguing connections which link together a new renormalization technique, the theory of *-representations of infinite dimensional *-Lie algebras, quantum probability, white noise and stochastic calculus and the theory of classical and quantum infinitely divisible processes.
format Article
author Accardi, L.
Boukas, A.
spellingShingle Accardi, L.
Boukas, A.
Quantum Probability, Renormalization and Infinite-Dimensional *-Lie Algebras
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Accardi, L.
Boukas, A.
author_sort Accardi, L.
title Quantum Probability, Renormalization and Infinite-Dimensional *-Lie Algebras
title_short Quantum Probability, Renormalization and Infinite-Dimensional *-Lie Algebras
title_full Quantum Probability, Renormalization and Infinite-Dimensional *-Lie Algebras
title_fullStr Quantum Probability, Renormalization and Infinite-Dimensional *-Lie Algebras
title_full_unstemmed Quantum Probability, Renormalization and Infinite-Dimensional *-Lie Algebras
title_sort quantum probability, renormalization and infinite-dimensional *-lie algebras
publisher Інститут математики НАН України
publishDate 2009
url http://dspace.nbuv.gov.ua/handle/123456789/149145
citation_txt Quantum Probability, Renormalization and Infinite-Dimensional *-Lie Algebras / L. Accardi, A. Boukas // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 60 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT accardil quantumprobabilityrenormalizationandinfinitedimensionalliealgebras
AT boukasa quantumprobabilityrenormalizationandinfinitedimensionalliealgebras
first_indexed 2023-05-20T17:32:25Z
last_indexed 2023-05-20T17:32:25Z
_version_ 1796153524867825664