On Linear Differential Equations Involving a Para-Grassmann Variable

As a first step towards a theory of differential equations involving para-Grassmann variables the linear equations with constant coefficients are discussed and solutions for equations of low order are given explicitly. A connection to n-generalized Fibonacci numbers is established. Several other cla...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2009
Автори: Mansour, T., Schork, M.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2009
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/149147
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On Linear Differential Equations Involving a Para-Grassmann Variable / T. Mansour, M. Schork // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 58 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:As a first step towards a theory of differential equations involving para-Grassmann variables the linear equations with constant coefficients are discussed and solutions for equations of low order are given explicitly. A connection to n-generalized Fibonacci numbers is established. Several other classes of differential equations (systems of first order, equations with variable coefficients, nonlinear equations) are also considered and the analogies or differences to the usual (''bosonic'') differential equations discussed.