On Linear Differential Equations Involving a Para-Grassmann Variable

As a first step towards a theory of differential equations involving para-Grassmann variables the linear equations with constant coefficients are discussed and solutions for equations of low order are given explicitly. A connection to n-generalized Fibonacci numbers is established. Several other cla...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2009
Автори: Mansour, T., Schork, M.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2009
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/149147
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On Linear Differential Equations Involving a Para-Grassmann Variable / T. Mansour, M. Schork // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 58 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-149147
record_format dspace
spelling irk-123456789-1491472019-02-20T01:26:44Z On Linear Differential Equations Involving a Para-Grassmann Variable Mansour, T. Schork, M. As a first step towards a theory of differential equations involving para-Grassmann variables the linear equations with constant coefficients are discussed and solutions for equations of low order are given explicitly. A connection to n-generalized Fibonacci numbers is established. Several other classes of differential equations (systems of first order, equations with variable coefficients, nonlinear equations) are also considered and the analogies or differences to the usual (''bosonic'') differential equations discussed. 2009 Article On Linear Differential Equations Involving a Para-Grassmann Variable / T. Mansour, M. Schork // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 58 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 11B39; 13A99; 15A75; 34A30; 81R05; 81T60 http://dspace.nbuv.gov.ua/handle/123456789/149147 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description As a first step towards a theory of differential equations involving para-Grassmann variables the linear equations with constant coefficients are discussed and solutions for equations of low order are given explicitly. A connection to n-generalized Fibonacci numbers is established. Several other classes of differential equations (systems of first order, equations with variable coefficients, nonlinear equations) are also considered and the analogies or differences to the usual (''bosonic'') differential equations discussed.
format Article
author Mansour, T.
Schork, M.
spellingShingle Mansour, T.
Schork, M.
On Linear Differential Equations Involving a Para-Grassmann Variable
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Mansour, T.
Schork, M.
author_sort Mansour, T.
title On Linear Differential Equations Involving a Para-Grassmann Variable
title_short On Linear Differential Equations Involving a Para-Grassmann Variable
title_full On Linear Differential Equations Involving a Para-Grassmann Variable
title_fullStr On Linear Differential Equations Involving a Para-Grassmann Variable
title_full_unstemmed On Linear Differential Equations Involving a Para-Grassmann Variable
title_sort on linear differential equations involving a para-grassmann variable
publisher Інститут математики НАН України
publishDate 2009
url http://dspace.nbuv.gov.ua/handle/123456789/149147
citation_txt On Linear Differential Equations Involving a Para-Grassmann Variable / T. Mansour, M. Schork // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 58 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT mansourt onlineardifferentialequationsinvolvingaparagrassmannvariable
AT schorkm onlineardifferentialequationsinvolvingaparagrassmannvariable
first_indexed 2023-05-20T17:32:25Z
last_indexed 2023-05-20T17:32:25Z
_version_ 1796153525077540864