Hilbert-Schmidt Operators vs. Integrable Systems of Elliptic Calogero-Moser Type III. The Heun Case

The Heun equation can be rewritten as an eigenvalue equation for an ordinary differential operator of the form −d²/dx²+V(g;x), where the potential is an elliptic function depending on a coupling vector g ∈ R⁴. Alternatively, this operator arises from the BC1 specialization of the BCN elliptic nonrel...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2009
Автор: Ruijsenaars, Simon N.M.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2009
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/149153
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Hilbert-Schmidt Operators vs. Integrable Systems of Elliptic Calogero-Moser Type III. The Heun Case / Simon N.M. Ruijsenaars // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 20 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-149153
record_format dspace
spelling irk-123456789-1491532019-02-20T01:26:58Z Hilbert-Schmidt Operators vs. Integrable Systems of Elliptic Calogero-Moser Type III. The Heun Case Ruijsenaars, Simon N.M. The Heun equation can be rewritten as an eigenvalue equation for an ordinary differential operator of the form −d²/dx²+V(g;x), where the potential is an elliptic function depending on a coupling vector g ∈ R⁴. Alternatively, this operator arises from the BC1 specialization of the BCN elliptic nonrelativistic Calogero-Moser system (a.k.a. the Inozemtsev system). Under suitable restrictions on the elliptic periods and on g, we associate to this operator a self-adjoint operator H(g) on the Hilbert space H = L²([0,ω₁],dx), where 2ω₁ is the real period of V(g;x). For this association and a further analysis of H(g), a certain Hilbert-Schmidt operator I(g) on H plays a critical role. In particular, using the intimate relation of H(g) and I(g), we obtain a remarkable spectral invariance: In terms of a coupling vector c ∈ R⁴ that depends linearly on g, the spectrum of H(g(c)) is invariant under arbitrary permutations σ(c), σ ∈ S₄. 2009 Article Hilbert-Schmidt Operators vs. Integrable Systems of Elliptic Calogero-Moser Type III. The Heun Case / Simon N.M. Ruijsenaars // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 20 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 33E05; 33E10; 46N50; 81Q05; 81Q10 http://dspace.nbuv.gov.ua/handle/123456789/149153 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The Heun equation can be rewritten as an eigenvalue equation for an ordinary differential operator of the form −d²/dx²+V(g;x), where the potential is an elliptic function depending on a coupling vector g ∈ R⁴. Alternatively, this operator arises from the BC1 specialization of the BCN elliptic nonrelativistic Calogero-Moser system (a.k.a. the Inozemtsev system). Under suitable restrictions on the elliptic periods and on g, we associate to this operator a self-adjoint operator H(g) on the Hilbert space H = L²([0,ω₁],dx), where 2ω₁ is the real period of V(g;x). For this association and a further analysis of H(g), a certain Hilbert-Schmidt operator I(g) on H plays a critical role. In particular, using the intimate relation of H(g) and I(g), we obtain a remarkable spectral invariance: In terms of a coupling vector c ∈ R⁴ that depends linearly on g, the spectrum of H(g(c)) is invariant under arbitrary permutations σ(c), σ ∈ S₄.
format Article
author Ruijsenaars, Simon N.M.
spellingShingle Ruijsenaars, Simon N.M.
Hilbert-Schmidt Operators vs. Integrable Systems of Elliptic Calogero-Moser Type III. The Heun Case
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Ruijsenaars, Simon N.M.
author_sort Ruijsenaars, Simon N.M.
title Hilbert-Schmidt Operators vs. Integrable Systems of Elliptic Calogero-Moser Type III. The Heun Case
title_short Hilbert-Schmidt Operators vs. Integrable Systems of Elliptic Calogero-Moser Type III. The Heun Case
title_full Hilbert-Schmidt Operators vs. Integrable Systems of Elliptic Calogero-Moser Type III. The Heun Case
title_fullStr Hilbert-Schmidt Operators vs. Integrable Systems of Elliptic Calogero-Moser Type III. The Heun Case
title_full_unstemmed Hilbert-Schmidt Operators vs. Integrable Systems of Elliptic Calogero-Moser Type III. The Heun Case
title_sort hilbert-schmidt operators vs. integrable systems of elliptic calogero-moser type iii. the heun case
publisher Інститут математики НАН України
publishDate 2009
url http://dspace.nbuv.gov.ua/handle/123456789/149153
citation_txt Hilbert-Schmidt Operators vs. Integrable Systems of Elliptic Calogero-Moser Type III. The Heun Case / Simon N.M. Ruijsenaars // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 20 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT ruijsenaarssimonnm hilbertschmidtoperatorsvsintegrablesystemsofellipticcalogeromosertypeiiitheheuncase
first_indexed 2023-05-20T17:32:26Z
last_indexed 2023-05-20T17:32:26Z
_version_ 1796153525711929344