Monopoles and Modifications of Bundles over Elliptic Curves

Modifications of bundles over complex curves is an operation that allows one to construct a new bundle from a given one. Modifications can change a topological type of bundle. We describe the topological type in terms of the characteristic classes of the bundle. Being applied to the Higgs bundles mo...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2009
Автори: Levin, A.M., Olshanetsky, M.A., Zotov, A.V.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2009
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/149154
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Monopoles and Modifications of Bundles over Elliptic Curves / A.M. Levin, M.A. Olshanetsky, A.V. Zotov // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 21 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-149154
record_format dspace
spelling irk-123456789-1491542019-02-20T01:27:07Z Monopoles and Modifications of Bundles over Elliptic Curves Levin, A.M. Olshanetsky, M.A. Zotov, A.V. Modifications of bundles over complex curves is an operation that allows one to construct a new bundle from a given one. Modifications can change a topological type of bundle. We describe the topological type in terms of the characteristic classes of the bundle. Being applied to the Higgs bundles modifications establish an equivalence between different classical integrable systems. Following Kapustin and Witten we define the modifications in terms of monopole solutions of the Bogomolny equation. We find the Dirac monopole solution in the case R × (elliptic curve). This solution is a three-dimensional generalization of the Kronecker series. We give two representations for this solution and derive a functional equation for it generalizing the Kronecker results. We use it to define Abelian modifications for bundles of arbitrary rank. We also describe non-Abelian modifications in terms of theta-functions with characteristic. 2009 Article Monopoles and Modifications of Bundles over Elliptic Curves / A.M. Levin, M.A. Olshanetsky, A.V. Zotov // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 21 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 14H70; 14F05; 33E05; 37K20; 81R12 http://dspace.nbuv.gov.ua/handle/123456789/149154 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Modifications of bundles over complex curves is an operation that allows one to construct a new bundle from a given one. Modifications can change a topological type of bundle. We describe the topological type in terms of the characteristic classes of the bundle. Being applied to the Higgs bundles modifications establish an equivalence between different classical integrable systems. Following Kapustin and Witten we define the modifications in terms of monopole solutions of the Bogomolny equation. We find the Dirac monopole solution in the case R × (elliptic curve). This solution is a three-dimensional generalization of the Kronecker series. We give two representations for this solution and derive a functional equation for it generalizing the Kronecker results. We use it to define Abelian modifications for bundles of arbitrary rank. We also describe non-Abelian modifications in terms of theta-functions with characteristic.
format Article
author Levin, A.M.
Olshanetsky, M.A.
Zotov, A.V.
spellingShingle Levin, A.M.
Olshanetsky, M.A.
Zotov, A.V.
Monopoles and Modifications of Bundles over Elliptic Curves
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Levin, A.M.
Olshanetsky, M.A.
Zotov, A.V.
author_sort Levin, A.M.
title Monopoles and Modifications of Bundles over Elliptic Curves
title_short Monopoles and Modifications of Bundles over Elliptic Curves
title_full Monopoles and Modifications of Bundles over Elliptic Curves
title_fullStr Monopoles and Modifications of Bundles over Elliptic Curves
title_full_unstemmed Monopoles and Modifications of Bundles over Elliptic Curves
title_sort monopoles and modifications of bundles over elliptic curves
publisher Інститут математики НАН України
publishDate 2009
url http://dspace.nbuv.gov.ua/handle/123456789/149154
citation_txt Monopoles and Modifications of Bundles over Elliptic Curves / A.M. Levin, M.A. Olshanetsky, A.V. Zotov // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 21 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT levinam monopolesandmodificationsofbundlesoverellipticcurves
AT olshanetskyma monopolesandmodificationsofbundlesoverellipticcurves
AT zotovav monopolesandmodificationsofbundlesoverellipticcurves
first_indexed 2023-05-20T17:32:27Z
last_indexed 2023-05-20T17:32:27Z
_version_ 1796153525817835520