Monopoles and Modifications of Bundles over Elliptic Curves
Modifications of bundles over complex curves is an operation that allows one to construct a new bundle from a given one. Modifications can change a topological type of bundle. We describe the topological type in terms of the characteristic classes of the bundle. Being applied to the Higgs bundles mo...
Збережено в:
Дата: | 2009 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2009
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/149154 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Monopoles and Modifications of Bundles over Elliptic Curves / A.M. Levin, M.A. Olshanetsky, A.V. Zotov // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 21 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-149154 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1491542019-02-20T01:27:07Z Monopoles and Modifications of Bundles over Elliptic Curves Levin, A.M. Olshanetsky, M.A. Zotov, A.V. Modifications of bundles over complex curves is an operation that allows one to construct a new bundle from a given one. Modifications can change a topological type of bundle. We describe the topological type in terms of the characteristic classes of the bundle. Being applied to the Higgs bundles modifications establish an equivalence between different classical integrable systems. Following Kapustin and Witten we define the modifications in terms of monopole solutions of the Bogomolny equation. We find the Dirac monopole solution in the case R × (elliptic curve). This solution is a three-dimensional generalization of the Kronecker series. We give two representations for this solution and derive a functional equation for it generalizing the Kronecker results. We use it to define Abelian modifications for bundles of arbitrary rank. We also describe non-Abelian modifications in terms of theta-functions with characteristic. 2009 Article Monopoles and Modifications of Bundles over Elliptic Curves / A.M. Levin, M.A. Olshanetsky, A.V. Zotov // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 21 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 14H70; 14F05; 33E05; 37K20; 81R12 http://dspace.nbuv.gov.ua/handle/123456789/149154 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Modifications of bundles over complex curves is an operation that allows one to construct a new bundle from a given one. Modifications can change a topological type of bundle. We describe the topological type in terms of the characteristic classes of the bundle. Being applied to the Higgs bundles modifications establish an equivalence between different classical integrable systems. Following Kapustin and Witten we define the modifications in terms of monopole solutions of the Bogomolny equation. We find the Dirac monopole solution in the case R × (elliptic curve). This solution is a three-dimensional generalization of the Kronecker series. We give two representations for this solution and derive a functional equation for it generalizing the Kronecker results. We use it to define Abelian modifications for bundles of arbitrary rank. We also describe non-Abelian modifications in terms of theta-functions with characteristic. |
format |
Article |
author |
Levin, A.M. Olshanetsky, M.A. Zotov, A.V. |
spellingShingle |
Levin, A.M. Olshanetsky, M.A. Zotov, A.V. Monopoles and Modifications of Bundles over Elliptic Curves Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Levin, A.M. Olshanetsky, M.A. Zotov, A.V. |
author_sort |
Levin, A.M. |
title |
Monopoles and Modifications of Bundles over Elliptic Curves |
title_short |
Monopoles and Modifications of Bundles over Elliptic Curves |
title_full |
Monopoles and Modifications of Bundles over Elliptic Curves |
title_fullStr |
Monopoles and Modifications of Bundles over Elliptic Curves |
title_full_unstemmed |
Monopoles and Modifications of Bundles over Elliptic Curves |
title_sort |
monopoles and modifications of bundles over elliptic curves |
publisher |
Інститут математики НАН України |
publishDate |
2009 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/149154 |
citation_txt |
Monopoles and Modifications of Bundles over Elliptic Curves / A.M. Levin, M.A. Olshanetsky, A.V. Zotov // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 21 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT levinam monopolesandmodificationsofbundlesoverellipticcurves AT olshanetskyma monopolesandmodificationsofbundlesoverellipticcurves AT zotovav monopolesandmodificationsofbundlesoverellipticcurves |
first_indexed |
2023-05-20T17:32:27Z |
last_indexed |
2023-05-20T17:32:27Z |
_version_ |
1796153525817835520 |