The Analytic Continuation of the Lippmann-Schwinger Eigenfunctions, and Antiunitary Symmetries

We review the way to analytically continue the Lippmann-Schwinger bras and kets into the complex plane. We will see that a naive analytic continuation leads to nonsensical results in resonance theory, and we will explain how the non-obvious but correct analytical continuation is done. We will see th...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2009
Автор: de la Madrid, R.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2009
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/149163
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:The Analytic Continuation of the Lippmann-Schwinger Eigenfunctions, and Antiunitary Symmetries / R. de la Madrid // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 52 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-149163
record_format dspace
spelling irk-123456789-1491632019-02-20T01:25:05Z The Analytic Continuation of the Lippmann-Schwinger Eigenfunctions, and Antiunitary Symmetries de la Madrid, R. We review the way to analytically continue the Lippmann-Schwinger bras and kets into the complex plane. We will see that a naive analytic continuation leads to nonsensical results in resonance theory, and we will explain how the non-obvious but correct analytical continuation is done. We will see that the physical basis for the non-obvious but correct analytic continuation lies in the invariance of the Hamiltonian under anti-unitary symmetries such as time reversal or PT. 2009 Article The Analytic Continuation of the Lippmann-Schwinger Eigenfunctions, and Antiunitary Symmetries / R. de la Madrid // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 52 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 81S99; 81U15 http://dspace.nbuv.gov.ua/handle/123456789/149163 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We review the way to analytically continue the Lippmann-Schwinger bras and kets into the complex plane. We will see that a naive analytic continuation leads to nonsensical results in resonance theory, and we will explain how the non-obvious but correct analytical continuation is done. We will see that the physical basis for the non-obvious but correct analytic continuation lies in the invariance of the Hamiltonian under anti-unitary symmetries such as time reversal or PT.
format Article
author de la Madrid, R.
spellingShingle de la Madrid, R.
The Analytic Continuation of the Lippmann-Schwinger Eigenfunctions, and Antiunitary Symmetries
Symmetry, Integrability and Geometry: Methods and Applications
author_facet de la Madrid, R.
author_sort de la Madrid, R.
title The Analytic Continuation of the Lippmann-Schwinger Eigenfunctions, and Antiunitary Symmetries
title_short The Analytic Continuation of the Lippmann-Schwinger Eigenfunctions, and Antiunitary Symmetries
title_full The Analytic Continuation of the Lippmann-Schwinger Eigenfunctions, and Antiunitary Symmetries
title_fullStr The Analytic Continuation of the Lippmann-Schwinger Eigenfunctions, and Antiunitary Symmetries
title_full_unstemmed The Analytic Continuation of the Lippmann-Schwinger Eigenfunctions, and Antiunitary Symmetries
title_sort analytic continuation of the lippmann-schwinger eigenfunctions, and antiunitary symmetries
publisher Інститут математики НАН України
publishDate 2009
url http://dspace.nbuv.gov.ua/handle/123456789/149163
citation_txt The Analytic Continuation of the Lippmann-Schwinger Eigenfunctions, and Antiunitary Symmetries / R. de la Madrid // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 52 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT delamadridr theanalyticcontinuationofthelippmannschwingereigenfunctionsandantiunitarysymmetries
AT delamadridr analyticcontinuationofthelippmannschwingereigenfunctionsandantiunitarysymmetries
first_indexed 2023-05-20T17:32:28Z
last_indexed 2023-05-20T17:32:28Z
_version_ 1796153526766796800