Elliptic Hypergeometric Solutions to Elliptic Difference Equations

It is shown how to define difference equations on particular lattices {xn}, n ∊ Z, made of values of an elliptic function at a sequence of arguments in arithmetic progression (elliptic lattice). Solutions to special difference equations have remarkable simple interpolatory expansions. Only linear di...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2009
Автор: Magnus, A.P.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2009
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/149168
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Elliptic Hypergeometric Solutions to Elliptic Difference Equations / A.P. Magnus // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 36 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-149168
record_format dspace
spelling irk-123456789-1491682019-02-20T01:27:37Z Elliptic Hypergeometric Solutions to Elliptic Difference Equations Magnus, A.P. It is shown how to define difference equations on particular lattices {xn}, n ∊ Z, made of values of an elliptic function at a sequence of arguments in arithmetic progression (elliptic lattice). Solutions to special difference equations have remarkable simple interpolatory expansions. Only linear difference equations of first order are considered here. 2009 Article Elliptic Hypergeometric Solutions to Elliptic Difference Equations / A.P. Magnus // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 36 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 39A70; 41A20 http://dspace.nbuv.gov.ua/handle/123456789/149168 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description It is shown how to define difference equations on particular lattices {xn}, n ∊ Z, made of values of an elliptic function at a sequence of arguments in arithmetic progression (elliptic lattice). Solutions to special difference equations have remarkable simple interpolatory expansions. Only linear difference equations of first order are considered here.
format Article
author Magnus, A.P.
spellingShingle Magnus, A.P.
Elliptic Hypergeometric Solutions to Elliptic Difference Equations
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Magnus, A.P.
author_sort Magnus, A.P.
title Elliptic Hypergeometric Solutions to Elliptic Difference Equations
title_short Elliptic Hypergeometric Solutions to Elliptic Difference Equations
title_full Elliptic Hypergeometric Solutions to Elliptic Difference Equations
title_fullStr Elliptic Hypergeometric Solutions to Elliptic Difference Equations
title_full_unstemmed Elliptic Hypergeometric Solutions to Elliptic Difference Equations
title_sort elliptic hypergeometric solutions to elliptic difference equations
publisher Інститут математики НАН України
publishDate 2009
url http://dspace.nbuv.gov.ua/handle/123456789/149168
citation_txt Elliptic Hypergeometric Solutions to Elliptic Difference Equations / A.P. Magnus // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 36 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT magnusap elliptichypergeometricsolutionstoellipticdifferenceequations
first_indexed 2023-05-20T17:32:29Z
last_indexed 2023-05-20T17:32:29Z
_version_ 1796153527298424832