Elliptic Hypergeometric Solutions to Elliptic Difference Equations
It is shown how to define difference equations on particular lattices {xn}, n ∊ Z, made of values of an elliptic function at a sequence of arguments in arithmetic progression (elliptic lattice). Solutions to special difference equations have remarkable simple interpolatory expansions. Only linear di...
Збережено в:
Дата: | 2009 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2009
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/149168 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Elliptic Hypergeometric Solutions to Elliptic Difference Equations / A.P. Magnus // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 36 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-149168 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1491682019-02-20T01:27:37Z Elliptic Hypergeometric Solutions to Elliptic Difference Equations Magnus, A.P. It is shown how to define difference equations on particular lattices {xn}, n ∊ Z, made of values of an elliptic function at a sequence of arguments in arithmetic progression (elliptic lattice). Solutions to special difference equations have remarkable simple interpolatory expansions. Only linear difference equations of first order are considered here. 2009 Article Elliptic Hypergeometric Solutions to Elliptic Difference Equations / A.P. Magnus // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 36 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 39A70; 41A20 http://dspace.nbuv.gov.ua/handle/123456789/149168 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
It is shown how to define difference equations on particular lattices {xn}, n ∊ Z, made of values of an elliptic function at a sequence of arguments in arithmetic progression (elliptic lattice). Solutions to special difference equations have remarkable simple interpolatory expansions. Only linear difference equations of first order are considered here. |
format |
Article |
author |
Magnus, A.P. |
spellingShingle |
Magnus, A.P. Elliptic Hypergeometric Solutions to Elliptic Difference Equations Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Magnus, A.P. |
author_sort |
Magnus, A.P. |
title |
Elliptic Hypergeometric Solutions to Elliptic Difference Equations |
title_short |
Elliptic Hypergeometric Solutions to Elliptic Difference Equations |
title_full |
Elliptic Hypergeometric Solutions to Elliptic Difference Equations |
title_fullStr |
Elliptic Hypergeometric Solutions to Elliptic Difference Equations |
title_full_unstemmed |
Elliptic Hypergeometric Solutions to Elliptic Difference Equations |
title_sort |
elliptic hypergeometric solutions to elliptic difference equations |
publisher |
Інститут математики НАН України |
publishDate |
2009 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/149168 |
citation_txt |
Elliptic Hypergeometric Solutions to Elliptic Difference Equations / A.P. Magnus // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 36 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT magnusap elliptichypergeometricsolutionstoellipticdifferenceequations |
first_indexed |
2023-05-20T17:32:29Z |
last_indexed |
2023-05-20T17:32:29Z |
_version_ |
1796153527298424832 |