Three Natural Generalizations of Fedosov Quantization
Fedosov's simple geometrical construction for deformation quantization of symplectic manifolds is generalized in three ways without introducing new variables: (1) The base manifold is allowed to be a supermanifold. (2) The star product does not have to be of Weyl/symmetric or Wick/normal type....
Збережено в:
Дата: | 2009 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2009
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/149170 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Three Natural Generalizations of Fedosov Quantization / K. Bering // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 46 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Fedosov's simple geometrical construction for deformation quantization of symplectic manifolds is generalized in three ways without introducing new variables: (1) The base manifold is allowed to be a supermanifold. (2) The star product does not have to be of Weyl/symmetric or Wick/normal type. (3) The initial geometric structures are allowed to depend on Planck's constant. |
---|