Three Natural Generalizations of Fedosov Quantization
Fedosov's simple geometrical construction for deformation quantization of symplectic manifolds is generalized in three ways without introducing new variables: (1) The base manifold is allowed to be a supermanifold. (2) The star product does not have to be of Weyl/symmetric or Wick/normal type....
Збережено в:
Дата: | 2009 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2009
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/149170 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Three Natural Generalizations of Fedosov Quantization / K. Bering // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 46 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-149170 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1491702019-02-20T01:27:21Z Three Natural Generalizations of Fedosov Quantization Bering, K. Fedosov's simple geometrical construction for deformation quantization of symplectic manifolds is generalized in three ways without introducing new variables: (1) The base manifold is allowed to be a supermanifold. (2) The star product does not have to be of Weyl/symmetric or Wick/normal type. (3) The initial geometric structures are allowed to depend on Planck's constant. 2009 Article Three Natural Generalizations of Fedosov Quantization / K. Bering // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 46 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 53D05; 53D55; 58A15; 58A50; 58C50; 58Z05 http://dspace.nbuv.gov.ua/handle/123456789/149170 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Fedosov's simple geometrical construction for deformation quantization of symplectic manifolds is generalized in three ways without introducing new variables: (1) The base manifold is allowed to be a supermanifold. (2) The star product does not have to be of Weyl/symmetric or Wick/normal type. (3) The initial geometric structures are allowed to depend on Planck's constant. |
format |
Article |
author |
Bering, K. |
spellingShingle |
Bering, K. Three Natural Generalizations of Fedosov Quantization Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Bering, K. |
author_sort |
Bering, K. |
title |
Three Natural Generalizations of Fedosov Quantization |
title_short |
Three Natural Generalizations of Fedosov Quantization |
title_full |
Three Natural Generalizations of Fedosov Quantization |
title_fullStr |
Three Natural Generalizations of Fedosov Quantization |
title_full_unstemmed |
Three Natural Generalizations of Fedosov Quantization |
title_sort |
three natural generalizations of fedosov quantization |
publisher |
Інститут математики НАН України |
publishDate |
2009 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/149170 |
citation_txt |
Three Natural Generalizations of Fedosov Quantization / K. Bering // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 46 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT beringk threenaturalgeneralizationsoffedosovquantization |
first_indexed |
2023-05-20T17:32:30Z |
last_indexed |
2023-05-20T17:32:30Z |
_version_ |
1796153527508140032 |