Three Natural Generalizations of Fedosov Quantization

Fedosov's simple geometrical construction for deformation quantization of symplectic manifolds is generalized in three ways without introducing new variables: (1) The base manifold is allowed to be a supermanifold. (2) The star product does not have to be of Weyl/symmetric or Wick/normal type....

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2009
Автор: Bering, K.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2009
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/149170
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Three Natural Generalizations of Fedosov Quantization / K. Bering // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 46 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-149170
record_format dspace
spelling irk-123456789-1491702019-02-20T01:27:21Z Three Natural Generalizations of Fedosov Quantization Bering, K. Fedosov's simple geometrical construction for deformation quantization of symplectic manifolds is generalized in three ways without introducing new variables: (1) The base manifold is allowed to be a supermanifold. (2) The star product does not have to be of Weyl/symmetric or Wick/normal type. (3) The initial geometric structures are allowed to depend on Planck's constant. 2009 Article Three Natural Generalizations of Fedosov Quantization / K. Bering // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 46 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 53D05; 53D55; 58A15; 58A50; 58C50; 58Z05 http://dspace.nbuv.gov.ua/handle/123456789/149170 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Fedosov's simple geometrical construction for deformation quantization of symplectic manifolds is generalized in three ways without introducing new variables: (1) The base manifold is allowed to be a supermanifold. (2) The star product does not have to be of Weyl/symmetric or Wick/normal type. (3) The initial geometric structures are allowed to depend on Planck's constant.
format Article
author Bering, K.
spellingShingle Bering, K.
Three Natural Generalizations of Fedosov Quantization
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Bering, K.
author_sort Bering, K.
title Three Natural Generalizations of Fedosov Quantization
title_short Three Natural Generalizations of Fedosov Quantization
title_full Three Natural Generalizations of Fedosov Quantization
title_fullStr Three Natural Generalizations of Fedosov Quantization
title_full_unstemmed Three Natural Generalizations of Fedosov Quantization
title_sort three natural generalizations of fedosov quantization
publisher Інститут математики НАН України
publishDate 2009
url http://dspace.nbuv.gov.ua/handle/123456789/149170
citation_txt Three Natural Generalizations of Fedosov Quantization / K. Bering // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 46 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT beringk threenaturalgeneralizationsoffedosovquantization
first_indexed 2023-05-20T17:32:30Z
last_indexed 2023-05-20T17:32:30Z
_version_ 1796153527508140032