Vector Fields on the Space of Functions Univalent Inside the Unit Disk via Faber Polynomials
We obtain the Kirillov vector fields on the set of functions f univalent inside the unit disk, in terms of the Faber polynomials of 1/f(1/z). Our construction relies on the generating function for Faber polynomials.
Збережено в:
Дата: | 2009 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2009
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/149172 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Vector Fields on the Space of Functions Univalent Inside the Unit Disk via Faber Polynomials / H. Airault // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 8 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | We obtain the Kirillov vector fields on the set of functions f univalent inside the unit disk, in terms of the Faber polynomials of 1/f(1/z). Our construction relies on the generating function for Faber polynomials. |
---|