Vector Fields on the Space of Functions Univalent Inside the Unit Disk via Faber Polynomials
We obtain the Kirillov vector fields on the set of functions f univalent inside the unit disk, in terms of the Faber polynomials of 1/f(1/z). Our construction relies on the generating function for Faber polynomials.
Збережено в:
Дата: | 2009 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2009
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/149172 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Vector Fields on the Space of Functions Univalent Inside the Unit Disk via Faber Polynomials / H. Airault // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 8 назв. — англ. |
Репозиторії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-149172 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1491722019-02-20T01:27:25Z Vector Fields on the Space of Functions Univalent Inside the Unit Disk via Faber Polynomials Airault, H. We obtain the Kirillov vector fields on the set of functions f univalent inside the unit disk, in terms of the Faber polynomials of 1/f(1/z). Our construction relies on the generating function for Faber polynomials. 2009 Article Vector Fields on the Space of Functions Univalent Inside the Unit Disk via Faber Polynomials / H. Airault // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 8 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 17B66; 33C80; 35A30 http://dspace.nbuv.gov.ua/handle/123456789/149172 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We obtain the Kirillov vector fields on the set of functions f univalent inside the unit disk, in terms of the Faber polynomials of 1/f(1/z). Our construction relies on the generating function for Faber polynomials. |
format |
Article |
author |
Airault, H. |
spellingShingle |
Airault, H. Vector Fields on the Space of Functions Univalent Inside the Unit Disk via Faber Polynomials Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Airault, H. |
author_sort |
Airault, H. |
title |
Vector Fields on the Space of Functions Univalent Inside the Unit Disk via Faber Polynomials |
title_short |
Vector Fields on the Space of Functions Univalent Inside the Unit Disk via Faber Polynomials |
title_full |
Vector Fields on the Space of Functions Univalent Inside the Unit Disk via Faber Polynomials |
title_fullStr |
Vector Fields on the Space of Functions Univalent Inside the Unit Disk via Faber Polynomials |
title_full_unstemmed |
Vector Fields on the Space of Functions Univalent Inside the Unit Disk via Faber Polynomials |
title_sort |
vector fields on the space of functions univalent inside the unit disk via faber polynomials |
publisher |
Інститут математики НАН України |
publishDate |
2009 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/149172 |
citation_txt |
Vector Fields on the Space of Functions Univalent Inside the Unit Disk via Faber Polynomials / H. Airault // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 8 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT airaulth vectorfieldsonthespaceoffunctionsunivalentinsidetheunitdiskviafaberpolynomials |
first_indexed |
2023-05-20T17:32:30Z |
last_indexed |
2023-05-20T17:32:30Z |
_version_ |
1796153527717855232 |