Nonlocal Operational Calculi for Dunkl Operators

The one-dimensional Dunkl operator Dk with a non-negative parameter k, is considered under an arbitrary nonlocal boundary value condition. The right inverse operator of Dk, satisfying this condition is studied. An operational calculus of Mikusinski type is developed. In the frames of this operationa...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2009
Автори: Dimovski, I.H., Hristov, V.Z.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2009
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/149174
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Nonlocal Operational Calculi for Dunkl Operators / I.H. Dimovski, V.Z. Hristov // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 16 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-149174
record_format dspace
spelling irk-123456789-1491742019-02-20T01:27:11Z Nonlocal Operational Calculi for Dunkl Operators Dimovski, I.H. Hristov, V.Z. The one-dimensional Dunkl operator Dk with a non-negative parameter k, is considered under an arbitrary nonlocal boundary value condition. The right inverse operator of Dk, satisfying this condition is studied. An operational calculus of Mikusinski type is developed. In the frames of this operational calculi an extension of the Heaviside algorithm for solution of nonlocal Cauchy boundary value problems for Dunkl functional-differential equations P(Dk)u = f with a given polynomial P is proposed. The solution of these equations in mean-periodic functions reduces to such problems. Necessary and sufficient condition for existence of unique solution in mean-periodic functions is found. 2009 Article Nonlocal Operational Calculi for Dunkl Operators / I.H. Dimovski, V.Z. Hristov // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 16 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 44A40; 44A35; 34K06 http://dspace.nbuv.gov.ua/handle/123456789/149174 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The one-dimensional Dunkl operator Dk with a non-negative parameter k, is considered under an arbitrary nonlocal boundary value condition. The right inverse operator of Dk, satisfying this condition is studied. An operational calculus of Mikusinski type is developed. In the frames of this operational calculi an extension of the Heaviside algorithm for solution of nonlocal Cauchy boundary value problems for Dunkl functional-differential equations P(Dk)u = f with a given polynomial P is proposed. The solution of these equations in mean-periodic functions reduces to such problems. Necessary and sufficient condition for existence of unique solution in mean-periodic functions is found.
format Article
author Dimovski, I.H.
Hristov, V.Z.
spellingShingle Dimovski, I.H.
Hristov, V.Z.
Nonlocal Operational Calculi for Dunkl Operators
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Dimovski, I.H.
Hristov, V.Z.
author_sort Dimovski, I.H.
title Nonlocal Operational Calculi for Dunkl Operators
title_short Nonlocal Operational Calculi for Dunkl Operators
title_full Nonlocal Operational Calculi for Dunkl Operators
title_fullStr Nonlocal Operational Calculi for Dunkl Operators
title_full_unstemmed Nonlocal Operational Calculi for Dunkl Operators
title_sort nonlocal operational calculi for dunkl operators
publisher Інститут математики НАН України
publishDate 2009
url http://dspace.nbuv.gov.ua/handle/123456789/149174
citation_txt Nonlocal Operational Calculi for Dunkl Operators / I.H. Dimovski, V.Z. Hristov // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 16 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT dimovskiih nonlocaloperationalcalculifordunkloperators
AT hristovvz nonlocaloperationalcalculifordunkloperators
first_indexed 2023-05-20T17:32:30Z
last_indexed 2023-05-20T17:32:30Z
_version_ 1796153527928619008