Hochschild Cohomology and Deformations of Clifford-Weyl Algebras

We give a complete study of the Clifford-Weyl algebra C(n,2k) from Bose-Fermi statistics, including Hochschild cohomology (with coefficients in itself). We show that C(n,2k) is rigid when n is even or when k ≠ 1. We find all non-trivial deformations of C(2n+1,2) and study their representations.

Збережено в:
Бібліографічні деталі
Дата:2009
Автори: Musson, I.M., Pinczon, G., Ushirobira, R.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2009
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/149177
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Hochschild Cohomology and Deformations of Clifford-Weyl Algebras / I.M. Musson, G. Pinczon, R. Ushirobira // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 28 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:We give a complete study of the Clifford-Weyl algebra C(n,2k) from Bose-Fermi statistics, including Hochschild cohomology (with coefficients in itself). We show that C(n,2k) is rigid when n is even or when k ≠ 1. We find all non-trivial deformations of C(2n+1,2) and study their representations.