Hochschild Cohomology and Deformations of Clifford-Weyl Algebras

We give a complete study of the Clifford-Weyl algebra C(n,2k) from Bose-Fermi statistics, including Hochschild cohomology (with coefficients in itself). We show that C(n,2k) is rigid when n is even or when k ≠ 1. We find all non-trivial deformations of C(2n+1,2) and study their representations.

Збережено в:
Бібліографічні деталі
Дата:2009
Автори: Musson, I.M., Pinczon, G., Ushirobira, R.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2009
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/149177
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Hochschild Cohomology and Deformations of Clifford-Weyl Algebras / I.M. Musson, G. Pinczon, R. Ushirobira // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 28 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-149177
record_format dspace
spelling irk-123456789-1491772019-02-20T01:26:42Z Hochschild Cohomology and Deformations of Clifford-Weyl Algebras Musson, I.M. Pinczon, G. Ushirobira, R. We give a complete study of the Clifford-Weyl algebra C(n,2k) from Bose-Fermi statistics, including Hochschild cohomology (with coefficients in itself). We show that C(n,2k) is rigid when n is even or when k ≠ 1. We find all non-trivial deformations of C(2n+1,2) and study their representations. 2009 Article Hochschild Cohomology and Deformations of Clifford-Weyl Algebras / I.M. Musson, G. Pinczon, R. Ushirobira // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 28 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 16E40; 16G99; 16S80; 17B56; 17B10; 53D55 http://dspace.nbuv.gov.ua/handle/123456789/149177 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We give a complete study of the Clifford-Weyl algebra C(n,2k) from Bose-Fermi statistics, including Hochschild cohomology (with coefficients in itself). We show that C(n,2k) is rigid when n is even or when k ≠ 1. We find all non-trivial deformations of C(2n+1,2) and study their representations.
format Article
author Musson, I.M.
Pinczon, G.
Ushirobira, R.
spellingShingle Musson, I.M.
Pinczon, G.
Ushirobira, R.
Hochschild Cohomology and Deformations of Clifford-Weyl Algebras
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Musson, I.M.
Pinczon, G.
Ushirobira, R.
author_sort Musson, I.M.
title Hochschild Cohomology and Deformations of Clifford-Weyl Algebras
title_short Hochschild Cohomology and Deformations of Clifford-Weyl Algebras
title_full Hochschild Cohomology and Deformations of Clifford-Weyl Algebras
title_fullStr Hochschild Cohomology and Deformations of Clifford-Weyl Algebras
title_full_unstemmed Hochschild Cohomology and Deformations of Clifford-Weyl Algebras
title_sort hochschild cohomology and deformations of clifford-weyl algebras
publisher Інститут математики НАН України
publishDate 2009
url http://dspace.nbuv.gov.ua/handle/123456789/149177
citation_txt Hochschild Cohomology and Deformations of Clifford-Weyl Algebras / I.M. Musson, G. Pinczon, R. Ushirobira // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 28 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT mussonim hochschildcohomologyanddeformationsofcliffordweylalgebras
AT pinczong hochschildcohomologyanddeformationsofcliffordweylalgebras
AT ushirobirar hochschildcohomologyanddeformationsofcliffordweylalgebras
first_indexed 2023-05-20T17:32:31Z
last_indexed 2023-05-20T17:32:31Z
_version_ 1796153528244240384