Hochschild Cohomology and Deformations of Clifford-Weyl Algebras
We give a complete study of the Clifford-Weyl algebra C(n,2k) from Bose-Fermi statistics, including Hochschild cohomology (with coefficients in itself). We show that C(n,2k) is rigid when n is even or when k ≠ 1. We find all non-trivial deformations of C(2n+1,2) and study their representations.
Збережено в:
Дата: | 2009 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2009
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/149177 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Hochschild Cohomology and Deformations of Clifford-Weyl Algebras / I.M. Musson, G. Pinczon, R. Ushirobira // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 28 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-149177 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1491772019-02-20T01:26:42Z Hochschild Cohomology and Deformations of Clifford-Weyl Algebras Musson, I.M. Pinczon, G. Ushirobira, R. We give a complete study of the Clifford-Weyl algebra C(n,2k) from Bose-Fermi statistics, including Hochschild cohomology (with coefficients in itself). We show that C(n,2k) is rigid when n is even or when k ≠ 1. We find all non-trivial deformations of C(2n+1,2) and study their representations. 2009 Article Hochschild Cohomology and Deformations of Clifford-Weyl Algebras / I.M. Musson, G. Pinczon, R. Ushirobira // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 28 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 16E40; 16G99; 16S80; 17B56; 17B10; 53D55 http://dspace.nbuv.gov.ua/handle/123456789/149177 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We give a complete study of the Clifford-Weyl algebra C(n,2k) from Bose-Fermi statistics, including Hochschild cohomology (with coefficients in itself). We show that C(n,2k) is rigid when n is even or when k ≠ 1. We find all non-trivial deformations of C(2n+1,2) and study their representations. |
format |
Article |
author |
Musson, I.M. Pinczon, G. Ushirobira, R. |
spellingShingle |
Musson, I.M. Pinczon, G. Ushirobira, R. Hochschild Cohomology and Deformations of Clifford-Weyl Algebras Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Musson, I.M. Pinczon, G. Ushirobira, R. |
author_sort |
Musson, I.M. |
title |
Hochschild Cohomology and Deformations of Clifford-Weyl Algebras |
title_short |
Hochschild Cohomology and Deformations of Clifford-Weyl Algebras |
title_full |
Hochschild Cohomology and Deformations of Clifford-Weyl Algebras |
title_fullStr |
Hochschild Cohomology and Deformations of Clifford-Weyl Algebras |
title_full_unstemmed |
Hochschild Cohomology and Deformations of Clifford-Weyl Algebras |
title_sort |
hochschild cohomology and deformations of clifford-weyl algebras |
publisher |
Інститут математики НАН України |
publishDate |
2009 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/149177 |
citation_txt |
Hochschild Cohomology and Deformations of Clifford-Weyl Algebras / I.M. Musson, G. Pinczon, R. Ushirobira // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 28 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT mussonim hochschildcohomologyanddeformationsofcliffordweylalgebras AT pinczong hochschildcohomologyanddeformationsofcliffordweylalgebras AT ushirobirar hochschildcohomologyanddeformationsofcliffordweylalgebras |
first_indexed |
2023-05-20T17:32:31Z |
last_indexed |
2023-05-20T17:32:31Z |
_version_ |
1796153528244240384 |