Induced Modules for Affine Lie Algebras
We study induced modules of nonzero central charge with arbitrary multiplicities over affine Lie algebras. For a given pseudo parabolic subalgebra P of an affine Lie algebra G, our main result establishes the equivalence between a certain category of P-induced G-modules and the category of weight P-...
Збережено в:
Дата: | 2009 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2009
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/149179 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Induced Modules for Affine Lie Algebras / V. Futorny, I. Kashuba // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 22 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-149179 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1491792019-02-20T01:27:22Z Induced Modules for Affine Lie Algebras Futorny, V. Kashuba, I. We study induced modules of nonzero central charge with arbitrary multiplicities over affine Lie algebras. For a given pseudo parabolic subalgebra P of an affine Lie algebra G, our main result establishes the equivalence between a certain category of P-induced G-modules and the category of weight P-modules with injective action of the central element of G. In particular, the induction functor preserves irreducible modules. If P is a parabolic subalgebra with a finite-dimensional Levi factor then it defines a unique pseudo parabolic subalgebra Pps, P Ì Pps. The structure of P-induced modules in this case is fully determined by the structure of Pps-induced modules. These results generalize similar reductions in particular cases previously considered by V. Futorny, S. König, V. Mazorchuk [Forum Math. 13 (2001), 641-661], B. Cox [Pacific J. Math. 165 (1994), 269-294] and I. Dimitrov, V. Futorny, I. Penkov [Comm. Math. Phys. 250 (2004), 47-63]. 2009 Article Induced Modules for Affine Lie Algebras / V. Futorny, I. Kashuba // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 22 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 17B65; 17B67 http://dspace.nbuv.gov.ua/handle/123456789/149179 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We study induced modules of nonzero central charge with arbitrary multiplicities over affine Lie algebras. For a given pseudo parabolic subalgebra P of an affine Lie algebra G, our main result establishes the equivalence between a certain category of P-induced G-modules and the category of weight P-modules with injective action of the central element of G. In particular, the induction functor preserves irreducible modules. If P is a parabolic subalgebra with a finite-dimensional Levi factor then it defines a unique pseudo parabolic subalgebra Pps, P Ì Pps. The structure of P-induced modules in this case is fully determined by the structure of Pps-induced modules. These results generalize similar reductions in particular cases previously considered by V. Futorny, S. König, V. Mazorchuk [Forum Math. 13 (2001), 641-661], B. Cox [Pacific J. Math. 165 (1994), 269-294] and I. Dimitrov, V. Futorny, I. Penkov [Comm. Math. Phys. 250 (2004), 47-63]. |
format |
Article |
author |
Futorny, V. Kashuba, I. |
spellingShingle |
Futorny, V. Kashuba, I. Induced Modules for Affine Lie Algebras Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Futorny, V. Kashuba, I. |
author_sort |
Futorny, V. |
title |
Induced Modules for Affine Lie Algebras |
title_short |
Induced Modules for Affine Lie Algebras |
title_full |
Induced Modules for Affine Lie Algebras |
title_fullStr |
Induced Modules for Affine Lie Algebras |
title_full_unstemmed |
Induced Modules for Affine Lie Algebras |
title_sort |
induced modules for affine lie algebras |
publisher |
Інститут математики НАН України |
publishDate |
2009 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/149179 |
citation_txt |
Induced Modules for Affine Lie Algebras / V. Futorny, I. Kashuba // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 22 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT futornyv inducedmodulesforaffineliealgebras AT kashubai inducedmodulesforaffineliealgebras |
first_indexed |
2023-05-20T17:32:31Z |
last_indexed |
2023-05-20T17:32:31Z |
_version_ |
1796153528455004160 |