2025-02-23T09:49:24-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-149182%22&qt=morelikethis&rows=5
2025-02-23T09:49:24-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-149182%22&qt=morelikethis&rows=5
2025-02-23T09:49:24-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T09:49:24-05:00 DEBUG: Deserialized SOLR response

Toeplitz Quantization and Asymptotic Expansions: Geometric Construction

For a real symmetric domain GR/KR, with complexification GC/KC, we introduce the concept of ''star-restriction'' (a real analogue of the ''star-products'' for quantization of Kähler manifolds) and give a geometric construction of the GR-invariant differential...

Full description

Saved in:
Bibliographic Details
Main Authors: Englis, M., Upmeier, H.
Format: Article
Language:English
Published: Інститут математики НАН України 2009
Series:Symmetry, Integrability and Geometry: Methods and Applications
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/149182
Tags: Add Tag
No Tags, Be the first to tag this record!
id irk-123456789-149182
record_format dspace
spelling irk-123456789-1491822019-02-20T01:27:31Z Toeplitz Quantization and Asymptotic Expansions: Geometric Construction Englis, M. Upmeier, H. For a real symmetric domain GR/KR, with complexification GC/KC, we introduce the concept of ''star-restriction'' (a real analogue of the ''star-products'' for quantization of Kähler manifolds) and give a geometric construction of the GR-invariant differential operators yielding its asymptotic expansion. 2009 Article Toeplitz Quantization and Asymptotic Expansions: Geometric Construction / M. Englis, H. Upmeier // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 37 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 32M15; 46E22; 47B35; 53D55 http://dspace.nbuv.gov.ua/handle/123456789/149182 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description For a real symmetric domain GR/KR, with complexification GC/KC, we introduce the concept of ''star-restriction'' (a real analogue of the ''star-products'' for quantization of Kähler manifolds) and give a geometric construction of the GR-invariant differential operators yielding its asymptotic expansion.
format Article
author Englis, M.
Upmeier, H.
spellingShingle Englis, M.
Upmeier, H.
Toeplitz Quantization and Asymptotic Expansions: Geometric Construction
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Englis, M.
Upmeier, H.
author_sort Englis, M.
title Toeplitz Quantization and Asymptotic Expansions: Geometric Construction
title_short Toeplitz Quantization and Asymptotic Expansions: Geometric Construction
title_full Toeplitz Quantization and Asymptotic Expansions: Geometric Construction
title_fullStr Toeplitz Quantization and Asymptotic Expansions: Geometric Construction
title_full_unstemmed Toeplitz Quantization and Asymptotic Expansions: Geometric Construction
title_sort toeplitz quantization and asymptotic expansions: geometric construction
publisher Інститут математики НАН України
publishDate 2009
url http://dspace.nbuv.gov.ua/handle/123456789/149182
citation_txt Toeplitz Quantization and Asymptotic Expansions: Geometric Construction / M. Englis, H. Upmeier // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 37 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT englism toeplitzquantizationandasymptoticexpansionsgeometricconstruction
AT upmeierh toeplitzquantizationandasymptoticexpansionsgeometricconstruction
first_indexed 2023-05-20T17:32:32Z
last_indexed 2023-05-20T17:32:32Z
_version_ 1796153528771674112