2025-02-23T09:49:24-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-149182%22&qt=morelikethis&rows=5
2025-02-23T09:49:24-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-149182%22&qt=morelikethis&rows=5
2025-02-23T09:49:24-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T09:49:24-05:00 DEBUG: Deserialized SOLR response
Toeplitz Quantization and Asymptotic Expansions: Geometric Construction
For a real symmetric domain GR/KR, with complexification GC/KC, we introduce the concept of ''star-restriction'' (a real analogue of the ''star-products'' for quantization of Kähler manifolds) and give a geometric construction of the GR-invariant differential...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Інститут математики НАН України
2009
|
Series: | Symmetry, Integrability and Geometry: Methods and Applications |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/149182 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
irk-123456789-149182 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1491822019-02-20T01:27:31Z Toeplitz Quantization and Asymptotic Expansions: Geometric Construction Englis, M. Upmeier, H. For a real symmetric domain GR/KR, with complexification GC/KC, we introduce the concept of ''star-restriction'' (a real analogue of the ''star-products'' for quantization of Kähler manifolds) and give a geometric construction of the GR-invariant differential operators yielding its asymptotic expansion. 2009 Article Toeplitz Quantization and Asymptotic Expansions: Geometric Construction / M. Englis, H. Upmeier // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 37 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 32M15; 46E22; 47B35; 53D55 http://dspace.nbuv.gov.ua/handle/123456789/149182 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
For a real symmetric domain GR/KR, with complexification GC/KC, we introduce the concept of ''star-restriction'' (a real analogue of the ''star-products'' for quantization of Kähler manifolds) and give a geometric construction of the GR-invariant differential operators yielding its asymptotic expansion. |
format |
Article |
author |
Englis, M. Upmeier, H. |
spellingShingle |
Englis, M. Upmeier, H. Toeplitz Quantization and Asymptotic Expansions: Geometric Construction Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Englis, M. Upmeier, H. |
author_sort |
Englis, M. |
title |
Toeplitz Quantization and Asymptotic Expansions: Geometric Construction |
title_short |
Toeplitz Quantization and Asymptotic Expansions: Geometric Construction |
title_full |
Toeplitz Quantization and Asymptotic Expansions: Geometric Construction |
title_fullStr |
Toeplitz Quantization and Asymptotic Expansions: Geometric Construction |
title_full_unstemmed |
Toeplitz Quantization and Asymptotic Expansions: Geometric Construction |
title_sort |
toeplitz quantization and asymptotic expansions: geometric construction |
publisher |
Інститут математики НАН України |
publishDate |
2009 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/149182 |
citation_txt |
Toeplitz Quantization and Asymptotic Expansions: Geometric Construction / M. Englis, H. Upmeier // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 37 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT englism toeplitzquantizationandasymptoticexpansionsgeometricconstruction AT upmeierh toeplitzquantizationandasymptoticexpansionsgeometricconstruction |
first_indexed |
2023-05-20T17:32:32Z |
last_indexed |
2023-05-20T17:32:32Z |
_version_ |
1796153528771674112 |