Note on Dilogarithm Identities from Nilpotent Double Affine Hecke Algebras

Recently Cherednik and Feigin [arXiv:1209.1978] obtained several Rogers-Ramanujan type identities via the nilpotent double affine Hecke algebras (Nil-DAHA). These identities further led to a series of dilogarithm identities, some of which are known, while some are left conjectural. We confirm and ex...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2012
Автор: Nakanishi, T.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2012
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/149184
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Note on Dilogarithm Identities from Nilpotent Double Affine Hecke Algebras / T. Nakanishi // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 9 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-149184
record_format dspace
spelling irk-123456789-1491842019-02-20T01:23:31Z Note on Dilogarithm Identities from Nilpotent Double Affine Hecke Algebras Nakanishi, T. Recently Cherednik and Feigin [arXiv:1209.1978] obtained several Rogers-Ramanujan type identities via the nilpotent double affine Hecke algebras (Nil-DAHA). These identities further led to a series of dilogarithm identities, some of which are known, while some are left conjectural. We confirm and explain all of them by showing the connection with Y-systems associated with (untwisted and twisted) quantum affine Kac-Moody algebras. 2012 Article Note on Dilogarithm Identities from Nilpotent Double Affine Hecke Algebras / T. Nakanishi // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 9 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 17B37; 13F60 DOI: http://dx.doi.org/10.3842/SIGMA.2012.104 http://dspace.nbuv.gov.ua/handle/123456789/149184 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Recently Cherednik and Feigin [arXiv:1209.1978] obtained several Rogers-Ramanujan type identities via the nilpotent double affine Hecke algebras (Nil-DAHA). These identities further led to a series of dilogarithm identities, some of which are known, while some are left conjectural. We confirm and explain all of them by showing the connection with Y-systems associated with (untwisted and twisted) quantum affine Kac-Moody algebras.
format Article
author Nakanishi, T.
spellingShingle Nakanishi, T.
Note on Dilogarithm Identities from Nilpotent Double Affine Hecke Algebras
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Nakanishi, T.
author_sort Nakanishi, T.
title Note on Dilogarithm Identities from Nilpotent Double Affine Hecke Algebras
title_short Note on Dilogarithm Identities from Nilpotent Double Affine Hecke Algebras
title_full Note on Dilogarithm Identities from Nilpotent Double Affine Hecke Algebras
title_fullStr Note on Dilogarithm Identities from Nilpotent Double Affine Hecke Algebras
title_full_unstemmed Note on Dilogarithm Identities from Nilpotent Double Affine Hecke Algebras
title_sort note on dilogarithm identities from nilpotent double affine hecke algebras
publisher Інститут математики НАН України
publishDate 2012
url http://dspace.nbuv.gov.ua/handle/123456789/149184
citation_txt Note on Dilogarithm Identities from Nilpotent Double Affine Hecke Algebras / T. Nakanishi // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 9 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT nakanishit noteondilogarithmidentitiesfromnilpotentdoubleaffineheckealgebras
first_indexed 2023-05-20T17:31:41Z
last_indexed 2023-05-20T17:31:41Z
_version_ 1796153492777205760