Relative Critical Points

Relative equilibria of Lagrangian and Hamiltonian systems with symmetry are critical points of appropriate scalar functions parametrized by the Lie algebra (or its dual) of the symmetry group. Setting aside the structures – symplectic, Poisson, or variational – generating dynamical systems from such...

Повний опис

Збережено в:
Бібліографічні деталі
Видавець:Інститут математики НАН України
Дата:2013
Автор: Lewis, D.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2013
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/149195
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Цитувати:Relative Critical Points / Lewis D. // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 53 назв. — англ.

Репозиторії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-149195
record_format dspace
spelling irk-123456789-1491952019-02-20T01:25:18Z Relative Critical Points Lewis, D. Relative equilibria of Lagrangian and Hamiltonian systems with symmetry are critical points of appropriate scalar functions parametrized by the Lie algebra (or its dual) of the symmetry group. Setting aside the structures – symplectic, Poisson, or variational – generating dynamical systems from such functions highlights the common features of their construction and analysis, and supports the construction of analogous functions in non-Hamiltonian settings. If the symmetry group is nonabelian, the functions are invariant only with respect to the isotropy subgroup of the given parameter value. Replacing the parametrized family of functions with a single function on the product manifold and extending the action using the (co)adjoint action on the algebra or its dual yields a fully invariant function. An invariant map can be used to reverse the usual perspective: rather than selecting a parametrized family of functions and finding their critical points, conditions under which functions will be critical on specific orbits, typically distinguished by isotropy class, can be derived. This strategy is illustrated using several well-known mechanical systems – the Lagrange top, the double spherical pendulum, the free rigid body, and the Riemann ellipsoids – and generalizations of these systems. 2013 Article Relative Critical Points / Lewis D. // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 53 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 37J15; 53D20; 58E09; 70H33 DOI: http://dx.doi.org/10.3842/SIGMA.2013.038 http://dspace.nbuv.gov.ua/handle/123456789/149195 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Relative equilibria of Lagrangian and Hamiltonian systems with symmetry are critical points of appropriate scalar functions parametrized by the Lie algebra (or its dual) of the symmetry group. Setting aside the structures – symplectic, Poisson, or variational – generating dynamical systems from such functions highlights the common features of their construction and analysis, and supports the construction of analogous functions in non-Hamiltonian settings. If the symmetry group is nonabelian, the functions are invariant only with respect to the isotropy subgroup of the given parameter value. Replacing the parametrized family of functions with a single function on the product manifold and extending the action using the (co)adjoint action on the algebra or its dual yields a fully invariant function. An invariant map can be used to reverse the usual perspective: rather than selecting a parametrized family of functions and finding their critical points, conditions under which functions will be critical on specific orbits, typically distinguished by isotropy class, can be derived. This strategy is illustrated using several well-known mechanical systems – the Lagrange top, the double spherical pendulum, the free rigid body, and the Riemann ellipsoids – and generalizations of these systems.
format Article
author Lewis, D.
spellingShingle Lewis, D.
Relative Critical Points
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Lewis, D.
author_sort Lewis, D.
title Relative Critical Points
title_short Relative Critical Points
title_full Relative Critical Points
title_fullStr Relative Critical Points
title_full_unstemmed Relative Critical Points
title_sort relative critical points
publisher Інститут математики НАН України
publishDate 2013
url http://dspace.nbuv.gov.ua/handle/123456789/149195
citation_txt Relative Critical Points / Lewis D. // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 53 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT lewisd relativecriticalpoints
first_indexed 2023-05-20T17:32:12Z
last_indexed 2023-05-20T17:32:12Z
_version_ 1796153529298059264