Drinfeld Doubles for Finite Subgroups of SU(2) and SU(3) Lie Groups

Drinfeld doubles of finite subgroups of SU(2) and SU(3) are investigated in detail. Their modular data – S, T and fusion matrices – are computed explicitly, and illustrated by means of fusion graphs. This allows us to reexamine certain identities on these tensor product or fusion multiplicities unde...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2013
Автори: Coquereaux, R., Zuber, J.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2013
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/149196
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Drinfeld Doubles for Finite Subgroups of SU(2) and SU(3) Lie Groups / R. Coquereaux, J. Zuber // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 53 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Drinfeld doubles of finite subgroups of SU(2) and SU(3) are investigated in detail. Their modular data – S, T and fusion matrices – are computed explicitly, and illustrated by means of fusion graphs. This allows us to reexamine certain identities on these tensor product or fusion multiplicities under conjugation of representations that had been discussed in our recent paper [J. Phys. A: Math. Theor. 44 (2011), 295208, 26 pages], proved to hold for simple and affine Lie algebras, and found to be generally wrong for finite groups. It is shown here that these identities fail also in general for Drinfeld doubles, indicating that modularity of the fusion category is not the decisive feature. Along the way, we collect many data on these Drinfeld doubles which are interesting for their own sake and maybe also in a relation with the theory of orbifolds in conformal field theory.