Multi-Component Integrable Systems and Invariant Curve Flows in Certain Geometries
In this paper, multi-component generalizations to the Camassa-Holm equation, the modified Camassa-Holm equation with cubic nonlinearity are introduced. Geometric formulations to the dual version of the Schrödinger equation, the complex Camassa-Holm equation and the multi-component modified Camassa-H...
Збережено в:
Дата: | 2013 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2013
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/149204 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Multi-Component Integrable Systems and Invariant Curve Flows in Certain Geometries / C. Qu, J. Song, R. Yao // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 60 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-149204 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1492042019-02-20T01:24:46Z Multi-Component Integrable Systems and Invariant Curve Flows in Certain Geometries Qu, C. Song, J. Yao, R. In this paper, multi-component generalizations to the Camassa-Holm equation, the modified Camassa-Holm equation with cubic nonlinearity are introduced. Geometric formulations to the dual version of the Schrödinger equation, the complex Camassa-Holm equation and the multi-component modified Camassa-Holm equation are provided. It is shown that these equations arise from non-streching invariant curve flows respectively in the three-dimensional Euclidean geometry, the two-dimensional Möbius sphere and n-dimensional sphere Sn(1). Integrability to these systems is also studied. 2013 Article Multi-Component Integrable Systems and Invariant Curve Flows in Certain Geometries / C. Qu, J. Song, R. Yao // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 60 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 37K10; 51M05; 51B10 DOI: http://dx.doi.org/10.3842/SIGMA.2013.001 http://dspace.nbuv.gov.ua/handle/123456789/149204 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
In this paper, multi-component generalizations to the Camassa-Holm equation, the modified Camassa-Holm equation with cubic nonlinearity are introduced. Geometric formulations to the dual version of the Schrödinger equation, the complex Camassa-Holm equation and the multi-component modified Camassa-Holm equation are provided. It is shown that these equations arise from non-streching invariant curve flows respectively in the three-dimensional Euclidean geometry, the two-dimensional Möbius sphere and n-dimensional sphere Sn(1). Integrability to these systems is also studied. |
format |
Article |
author |
Qu, C. Song, J. Yao, R. |
spellingShingle |
Qu, C. Song, J. Yao, R. Multi-Component Integrable Systems and Invariant Curve Flows in Certain Geometries Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Qu, C. Song, J. Yao, R. |
author_sort |
Qu, C. |
title |
Multi-Component Integrable Systems and Invariant Curve Flows in Certain Geometries |
title_short |
Multi-Component Integrable Systems and Invariant Curve Flows in Certain Geometries |
title_full |
Multi-Component Integrable Systems and Invariant Curve Flows in Certain Geometries |
title_fullStr |
Multi-Component Integrable Systems and Invariant Curve Flows in Certain Geometries |
title_full_unstemmed |
Multi-Component Integrable Systems and Invariant Curve Flows in Certain Geometries |
title_sort |
multi-component integrable systems and invariant curve flows in certain geometries |
publisher |
Інститут математики НАН України |
publishDate |
2013 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/149204 |
citation_txt |
Multi-Component Integrable Systems and Invariant Curve Flows in Certain Geometries / C. Qu, J. Song, R. Yao // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 60 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT quc multicomponentintegrablesystemsandinvariantcurveflowsincertaingeometries AT songj multicomponentintegrablesystemsandinvariantcurveflowsincertaingeometries AT yaor multicomponentintegrablesystemsandinvariantcurveflowsincertaingeometries |
first_indexed |
2023-05-20T17:31:42Z |
last_indexed |
2023-05-20T17:31:42Z |
_version_ |
1796153505381089280 |