Multi-Component Integrable Systems and Invariant Curve Flows in Certain Geometries

In this paper, multi-component generalizations to the Camassa-Holm equation, the modified Camassa-Holm equation with cubic nonlinearity are introduced. Geometric formulations to the dual version of the Schrödinger equation, the complex Camassa-Holm equation and the multi-component modified Camassa-H...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2013
Автори: Qu, C., Song, J., Yao, R.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2013
Назва видання:Symmetry, Integrability and Geometry: Methods and Applications
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/149204
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Multi-Component Integrable Systems and Invariant Curve Flows in Certain Geometries / C. Qu, J. Song, R. Yao // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 60 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-149204
record_format dspace
spelling irk-123456789-1492042019-02-20T01:24:46Z Multi-Component Integrable Systems and Invariant Curve Flows in Certain Geometries Qu, C. Song, J. Yao, R. In this paper, multi-component generalizations to the Camassa-Holm equation, the modified Camassa-Holm equation with cubic nonlinearity are introduced. Geometric formulations to the dual version of the Schrödinger equation, the complex Camassa-Holm equation and the multi-component modified Camassa-Holm equation are provided. It is shown that these equations arise from non-streching invariant curve flows respectively in the three-dimensional Euclidean geometry, the two-dimensional Möbius sphere and n-dimensional sphere Sn(1). Integrability to these systems is also studied. 2013 Article Multi-Component Integrable Systems and Invariant Curve Flows in Certain Geometries / C. Qu, J. Song, R. Yao // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 60 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 37K10; 51M05; 51B10 DOI: http://dx.doi.org/10.3842/SIGMA.2013.001 http://dspace.nbuv.gov.ua/handle/123456789/149204 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description In this paper, multi-component generalizations to the Camassa-Holm equation, the modified Camassa-Holm equation with cubic nonlinearity are introduced. Geometric formulations to the dual version of the Schrödinger equation, the complex Camassa-Holm equation and the multi-component modified Camassa-Holm equation are provided. It is shown that these equations arise from non-streching invariant curve flows respectively in the three-dimensional Euclidean geometry, the two-dimensional Möbius sphere and n-dimensional sphere Sn(1). Integrability to these systems is also studied.
format Article
author Qu, C.
Song, J.
Yao, R.
spellingShingle Qu, C.
Song, J.
Yao, R.
Multi-Component Integrable Systems and Invariant Curve Flows in Certain Geometries
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Qu, C.
Song, J.
Yao, R.
author_sort Qu, C.
title Multi-Component Integrable Systems and Invariant Curve Flows in Certain Geometries
title_short Multi-Component Integrable Systems and Invariant Curve Flows in Certain Geometries
title_full Multi-Component Integrable Systems and Invariant Curve Flows in Certain Geometries
title_fullStr Multi-Component Integrable Systems and Invariant Curve Flows in Certain Geometries
title_full_unstemmed Multi-Component Integrable Systems and Invariant Curve Flows in Certain Geometries
title_sort multi-component integrable systems and invariant curve flows in certain geometries
publisher Інститут математики НАН України
publishDate 2013
url http://dspace.nbuv.gov.ua/handle/123456789/149204
citation_txt Multi-Component Integrable Systems and Invariant Curve Flows in Certain Geometries / C. Qu, J. Song, R. Yao // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 60 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT quc multicomponentintegrablesystemsandinvariantcurveflowsincertaingeometries
AT songj multicomponentintegrablesystemsandinvariantcurveflowsincertaingeometries
AT yaor multicomponentintegrablesystemsandinvariantcurveflowsincertaingeometries
first_indexed 2023-05-20T17:31:42Z
last_indexed 2023-05-20T17:31:42Z
_version_ 1796153505381089280