2025-02-23T16:12:03-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-149211%22&qt=morelikethis&rows=5
2025-02-23T16:12:03-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-149211%22&qt=morelikethis&rows=5
2025-02-23T16:12:03-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T16:12:03-05:00 DEBUG: Deserialized SOLR response

On the N-Solitons Solutions in the Novikov-Veselov Equation

We construct the N-solitons solution in the Novikov-Veselov equation from the extended Moutard transformation and the Pfaffian structure. Also, the corresponding wave functions are obtained explicitly. As a result, the property characterizing the N-solitons wave function is proved using the Pfaffian...

Full description

Saved in:
Bibliographic Details
Main Author: Chang, J.-H.
Format: Article
Language:English
Published: Інститут математики НАН України 2013
Series:Symmetry, Integrability and Geometry: Methods and Applications
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/149211
Tags: Add Tag
No Tags, Be the first to tag this record!
id irk-123456789-149211
record_format dspace
spelling irk-123456789-1492112019-02-20T01:27:42Z On the N-Solitons Solutions in the Novikov-Veselov Equation Chang, J.-H. We construct the N-solitons solution in the Novikov-Veselov equation from the extended Moutard transformation and the Pfaffian structure. Also, the corresponding wave functions are obtained explicitly. As a result, the property characterizing the N-solitons wave function is proved using the Pfaffian expansion. This property corresponding to the discrete scattering data for N-solitons solution is obtained in [arXiv:0912.2155] from the ∂¯¯¯-dressing method. 2013 Article On the N-Solitons Solutions in the Novikov-Veselov Equation / J.-H. Chang // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 41 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 35C08; 35A22 DOI: http://dx.doi.org/10.3842/SIGMA.2013.006 http://dspace.nbuv.gov.ua/handle/123456789/149211 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We construct the N-solitons solution in the Novikov-Veselov equation from the extended Moutard transformation and the Pfaffian structure. Also, the corresponding wave functions are obtained explicitly. As a result, the property characterizing the N-solitons wave function is proved using the Pfaffian expansion. This property corresponding to the discrete scattering data for N-solitons solution is obtained in [arXiv:0912.2155] from the ∂¯¯¯-dressing method.
format Article
author Chang, J.-H.
spellingShingle Chang, J.-H.
On the N-Solitons Solutions in the Novikov-Veselov Equation
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Chang, J.-H.
author_sort Chang, J.-H.
title On the N-Solitons Solutions in the Novikov-Veselov Equation
title_short On the N-Solitons Solutions in the Novikov-Veselov Equation
title_full On the N-Solitons Solutions in the Novikov-Veselov Equation
title_fullStr On the N-Solitons Solutions in the Novikov-Veselov Equation
title_full_unstemmed On the N-Solitons Solutions in the Novikov-Veselov Equation
title_sort on the n-solitons solutions in the novikov-veselov equation
publisher Інститут математики НАН України
publishDate 2013
url http://dspace.nbuv.gov.ua/handle/123456789/149211
citation_txt On the N-Solitons Solutions in the Novikov-Veselov Equation / J.-H. Chang // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 41 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT changjh onthensolitonssolutionsinthenovikovveselovequation
first_indexed 2023-05-20T17:31:42Z
last_indexed 2023-05-20T17:31:42Z
_version_ 1796153505804713984