On the N-Solitons Solutions in the Novikov-Veselov Equation
We construct the N-solitons solution in the Novikov-Veselov equation from the extended Moutard transformation and the Pfaffian structure. Also, the corresponding wave functions are obtained explicitly. As a result, the property characterizing the N-solitons wave function is proved using the Pfaffian...
Збережено в:
Дата: | 2013 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут математики НАН України
2013
|
Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/149211 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | On the N-Solitons Solutions in the Novikov-Veselov Equation / J.-H. Chang // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 41 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-149211 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1492112019-02-20T01:27:42Z On the N-Solitons Solutions in the Novikov-Veselov Equation Chang, J.-H. We construct the N-solitons solution in the Novikov-Veselov equation from the extended Moutard transformation and the Pfaffian structure. Also, the corresponding wave functions are obtained explicitly. As a result, the property characterizing the N-solitons wave function is proved using the Pfaffian expansion. This property corresponding to the discrete scattering data for N-solitons solution is obtained in [arXiv:0912.2155] from the ∂¯¯¯-dressing method. 2013 Article On the N-Solitons Solutions in the Novikov-Veselov Equation / J.-H. Chang // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 41 назв. — англ. 1815-0659 2010 Mathematics Subject Classification: 35C08; 35A22 DOI: http://dx.doi.org/10.3842/SIGMA.2013.006 http://dspace.nbuv.gov.ua/handle/123456789/149211 en Symmetry, Integrability and Geometry: Methods and Applications Інститут математики НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We construct the N-solitons solution in the Novikov-Veselov equation from the extended Moutard transformation and the Pfaffian structure. Also, the corresponding wave functions are obtained explicitly. As a result, the property characterizing the N-solitons wave function is proved using the Pfaffian expansion. This property corresponding to the discrete scattering data for N-solitons solution is obtained in [arXiv:0912.2155] from the ∂¯¯¯-dressing method. |
format |
Article |
author |
Chang, J.-H. |
spellingShingle |
Chang, J.-H. On the N-Solitons Solutions in the Novikov-Veselov Equation Symmetry, Integrability and Geometry: Methods and Applications |
author_facet |
Chang, J.-H. |
author_sort |
Chang, J.-H. |
title |
On the N-Solitons Solutions in the Novikov-Veselov Equation |
title_short |
On the N-Solitons Solutions in the Novikov-Veselov Equation |
title_full |
On the N-Solitons Solutions in the Novikov-Veselov Equation |
title_fullStr |
On the N-Solitons Solutions in the Novikov-Veselov Equation |
title_full_unstemmed |
On the N-Solitons Solutions in the Novikov-Veselov Equation |
title_sort |
on the n-solitons solutions in the novikov-veselov equation |
publisher |
Інститут математики НАН України |
publishDate |
2013 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/149211 |
citation_txt |
On the N-Solitons Solutions in the Novikov-Veselov Equation / J.-H. Chang // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 41 назв. — англ. |
series |
Symmetry, Integrability and Geometry: Methods and Applications |
work_keys_str_mv |
AT changjh onthensolitonssolutionsinthenovikovveselovequation |
first_indexed |
2023-05-20T17:31:42Z |
last_indexed |
2023-05-20T17:31:42Z |
_version_ |
1796153505804713984 |